Boundary Traversal of binary tree
Last Updated :
23 Jul, 2025
Given a binary tree, the task is to find the boundary nodes of the binary tree Anti-Clockwise starting from the root.

The boundary includes:
- left boundary (nodes on left excluding leaf nodes)
- leaves (consist of only the leaf nodes)
- right boundary (nodes on right excluding leaf nodes)
The left boundary is defined as the path from the root to the left-most leaf node (excluding leaf node itself).
The right boundary is defined as the path from the root to the right-most leaf node (excluding leaf node itself).
Note: If the root doesn't have a left subtree or right subtree, then the root itself is the left or right boundary.
[Approach - 1] Using Recursion - O(n) Time and O(h) Space
The idea is to traverse the boundary of the binary tree in three parts:
- Collect Left Boundary Nodes: Collects all nodes from the root’s left child, excluding leaf nodes, until a leaf is reached.
- Collect Leaf Nodes: Using recursion traverse the tree and collect all leaf nodes in the result.
- Collect Right Boundary Nodes: Collects all nodes from the root’s right child, excluding leaf nodes, in reverse order.
By combining these parts, we achieve the desired boundary traversal. Each part is collected using recursive functions for left boundary, leaf nodes, and right boundary traversal.
C++
//Driver Code Starts
// C++ implementation for Boundary
// Traversal of Binary Tree using recursion
#include <iostream>
#include <vector>
using namespace std;
class Node {
public:
int data;
Node *left;
Node *right;
Node(int x) {
data = x;
left = right = nullptr;
}
};
//Driver Code Ends
bool isLeaf(Node *node) {
return node->left == nullptr && node->right == nullptr;
}
// Function to collect left boundary nodes
// (top-down order)
void collectBoundaryLeft(Node* root, vector<int>& res) {
// exclude leaf node
if (root == nullptr || isLeaf(root))
return;
res.push_back(root->data);
if (root->left)
collectBoundaryLeft(root->left, res);
else if (root->right)
collectBoundaryLeft(root->right, res);
}
// Function to collect all leaf nodes
void collectLeaves(Node *root, vector<int> &res) {
if (root == nullptr)
return;
// Add leaf nodes
if (isLeaf(root)) {
res.push_back(root->data);
return;
}
collectLeaves(root->left, res);
collectLeaves(root->right, res);
}
// Function to collect right boundary nodes
// (bottom-up order)
void collectBoundaryRight(Node* root, vector<int>& res) {
// exclude leaf nodes
if (root == nullptr || isLeaf(root))
return;
if (root->right)
collectBoundaryRight(root->right, res);
else if (root->left)
collectBoundaryRight(root->left, res);
res.push_back(root->data);
}
// Function to find Boundary Traversal of Binary Tree
vector<int> boundaryTraversal(Node *root) {
vector<int> res;
if (!root)
return res;
// Add root data if it's not a leaf
if (!isLeaf(root))
res.push_back(root->data);
// Collect left boundary
collectBoundaryLeft(root->left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root->right, res);
return res;
}
//Driver Code Starts
int main() {
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
Node *root = new Node(20);
root->left = new Node(8);
root->right = new Node(22);
root->left->left = new Node(4);
root->left->right = new Node(12);
root->left->right->left = new Node(10);
root->left->right->right = new Node(14);
root->right->right = new Node(25);
vector<int> boundary = boundaryTraversal(root);
for (int x : boundary)
cout << x << " ";
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
// Java implementation for Boundary Traversal of Binary Tree using recursion
import java.util.ArrayList;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
//Driver Code Ends
static boolean isLeaf(Node node) {
return node.left == null && node.right == null;
}
// Function to collect left boundary nodes
// (top-down order)
static void collectBoundaryLeft(Node root, ArrayList<Integer> res) {
if (root == null || isLeaf(root))
return;
res.add(root.data);
if (root.left != null)
collectBoundaryLeft(root.left, res);
else if (root.right != null)
collectBoundaryLeft(root.right, res);
}
// Function to collect all leaf nodes
static void collectLeaves(Node root, ArrayList<Integer> res) {
if (root == null)
return;
if (isLeaf(root)) {
res.add(root.data);
return;
}
collectLeaves(root.left, res);
collectLeaves(root.right, res);
}
// Function to collect right boundary nodes
// (bottom-up order)
static void collectBoundaryRight(Node root, ArrayList<Integer> res) {
if (root == null || isLeaf(root))
return;
if (root.right != null)
collectBoundaryRight(root.right, res);
else if (root.left != null)
collectBoundaryRight(root.left, res);
res.add(root.data);
}
// Function to find Boundary Traversal of Binary Tree
static ArrayList<Integer> boundaryTraversal(Node root) {
ArrayList<Integer> res = new ArrayList<>();
if (root == null)
return res;
// Add root data if it's not a leaf
if (!isLeaf(root))
res.add(root.data);
// Collect left boundary
collectBoundaryLeft(root.left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root.right, res);
return res;
}
//Driver Code Starts
public static void main(String[] args) {
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
root.right.right = new Node(25);
ArrayList<Integer> boundary = boundaryTraversal(root);
for (int x : boundary)
System.out.print(x + " ");
}
}
//Driver Code Ends
Python
#Driver Code Starts
# Python implementation for Boundary Traversal of Binary Tree using recursion
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
#Driver Code Ends
def isLeaf(node):
return node.left is None and node.right is None
# Function to collect left boundary nodes
# (top-down order)
def collectBoundaryLeft(root, res):
if root is None or isLeaf(root):
return
res.append(root.data)
if root.left:
collectBoundaryLeft(root.left, res)
elif root.right:
collectBoundaryLeft(root.right, res)
# Function to collect all leaf nodes
def collectLeaves(root, res):
if root is None:
return
if isLeaf(root):
res.append(root.data)
return
collectLeaves(root.left, res)
collectLeaves(root.right, res)
# Function to collect right boundary nodes
# (bottom-up order)
def collectBoundaryRight(root, res):
if root is None or isLeaf(root):
return
if root.right:
collectBoundaryRight(root.right, res)
elif root.left:
collectBoundaryRight(root.left, res)
res.append(root.data)
# Function to find Boundary Traversal of Binary Tree
def boundaryTraversal(root):
res = []
if not root:
return res
# Add root data if it's not a leaf
if not isLeaf(root):
res.append(root.data)
# Collect left boundary
collectBoundaryLeft(root.left, res)
# Collect leaf nodes
collectLeaves(root, res)
# Collect right boundary
collectBoundaryRight(root.right, res)
return res
#Driver Code Starts
if __name__ == "__main__":
# Hardcoded Binary tree
# 20
# / \
# 8 22
# / \ \
# 4 12 25
# / \
# 10 14
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
root.right.right = Node(25)
boundary = boundaryTraversal(root)
print(' '.join(map(str, boundary)))
#Driver Code Ends
C#
//Driver Code Starts
// C# implementation for Boundary
// Traversal of Binary Tree using recursion
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
//Driver Code Ends
static bool isLeaf(Node node) {
return node.left == null && node.right == null;
}
// Function to collect left boundary nodes
// (top-down order)
static void collectBoundaryLeft(Node root, List<int> res) {
if (root == null || isLeaf(root))
return;
res.Add(root.data);
if (root.left != null)
collectBoundaryLeft(root.left, res);
else if (root.right != null)
collectBoundaryLeft(root.right, res);
}
// Function to collect all leaf nodes
static void collectLeaves(Node root, List<int> res) {
if (root == null)
return;
if (isLeaf(root)) {
res.Add(root.data);
return;
}
collectLeaves(root.left, res);
collectLeaves(root.right, res);
}
// Function to collect right boundary nodes
// (bottom-up order)
static void collectBoundaryRight(Node root, List<int> res) {
if (root == null || isLeaf(root))
return;
if (root.right != null)
collectBoundaryRight(root.right, res);
else if (root.left != null)
collectBoundaryRight(root.left, res);
res.Add(root.data);
}
// Function to find Boundary Traversal of Binary Tree
static List<int> boundaryTraversal(Node root) {
List<int> res = new List<int>();
if (root == null)
return res;
// Add root data if it's not a leaf
if (!isLeaf(root))
res.Add(root.data);
// Collect left boundary
collectBoundaryLeft(root.left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root.right, res);
return res;
}
//Driver Code Starts
static void Main(string[] args) {
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
root.right.right = new Node(25);
List<int> boundary = boundaryTraversal(root);
Console.WriteLine(string.Join(" ", boundary));
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
// JavaScript implementation for Boundary Traversal of Binary Tree using recursion
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
//Driver Code Ends
function isLeaf(node) {
return !node.left && !node.right;
}
// Function to collect left boundary nodes
// (top-down order)
function collectBoundaryLeft(root, res) {
if (!root || isLeaf(root)) return;
res.push(root.data);
if (root.left) {
collectBoundaryLeft(root.left, res);
} else if (root.right) {
collectBoundaryLeft(root.right, res);
}
}
// Function to collect all leaf nodes
function collectLeaves(root, res) {
if (!root) return;
if (isLeaf(root)) {
res.push(root.data);
return;
}
collectLeaves(root.left, res);
collectLeaves(root.right, res);
}
// Function to collect right boundary nodes
// (bottom-up order)
function collectBoundaryRight(root, res) {
if (!root || isLeaf(root)) return;
if (root.right) {
collectBoundaryRight(root.right, res);
} else if (root.left) {
collectBoundaryRight(root.left, res);
}
res.push(root.data);
}
// Function to find Boundary Traversal of Binary Tree
function boundaryTraversal(root) {
const res = [];
if (!root) return res;
// Add root data if it's not a leaf
if (!isLeaf(root)) {
res.push(root.data);
}
// Collect left boundary
collectBoundaryLeft(root.left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root.right, res);
return res;
}
//Driver Code Starts
// Driver code
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
const root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
root.right.right = new Node(25);
const boundary = boundaryTraversal(root);
console.log(boundary.join(" "));
//Driver Code Ends
[Approach - 2] Using Iteration and Morris Traversal - O(n) Time and O(1) Space
The idea is to reduce the auxiliary space used by the memory stack in the above approach. This approach is similar to the previous one, but instead of recursion, we use iteration to find the left and right boundaries, and use Morris Traversal to find the leaf nodes.
C++
//Driver Code Starts
// C++ implementation for Boundary Traversal of Binary Tree
// using Iteration with Morris Traversal
#include <iostream>
#include <vector>
using namespace std;
class Node {
public:
int data;
Node *left;
Node *right;
Node(int x) {
data = x;
left = right = nullptr;
}
};
//Driver Code Ends
bool isLeaf(Node *node) {
return node->left == nullptr && node->right == nullptr;
}
// Function to collect the left boundary nodes
void collectBoundaryLeft(Node *root, vector<int> &res) {
if (root == nullptr)
return;
Node *curr = root;
while (!isLeaf(curr)) {
res.push_back(curr->data);
if (curr->left)
curr = curr->left;
else
curr = curr->right;
}
}
// Function to collect the leaf nodes using Morris Traversal
void collectLeaves(Node* root, vector<int>& res) {
Node* current = root;
while (current) {
if (current->left == nullptr) {
// If it's a leaf node
if (current->right == nullptr)
res.push_back(current->data);
current = current->right;
}
else {
// Find the inorder predecessor
Node* predecessor = current->left;
while (predecessor->right && predecessor->right != current) {
predecessor = predecessor->right;
}
if (predecessor->right == nullptr) {
predecessor->right = current;
current = current->left;
}
else {
// If it's predecessor is a leaf node
if (predecessor->left == nullptr)
res.push_back(predecessor->data);
predecessor->right = nullptr;
current = current->right;
}
}
}
}
// Function to collect the right boundary nodes
void collectBoundaryRight(Node *root, vector<int> &res) {
if (root == nullptr)
return;
Node *curr = root;
vector<int> temp;
while (!isLeaf(curr)) {
temp.push_back(curr->data);
if (curr->right)
curr = curr->right;
else
curr = curr->left;
}
for (int i = temp.size() - 1; i >= 0; --i)
res.push_back(temp[i]);
}
// Function to perform boundary traversal
vector<int> boundaryTraversal(Node *root) {
vector<int> res;
if (!root)
return res;
// Add root data if it's not a leaf
if (!isLeaf(root))
res.push_back(root->data);
// Collect left boundary
collectBoundaryLeft(root->left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root->right, res);
return res;
}
//Driver Code Starts
int main() {
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
Node *root = new Node(20);
root->left = new Node(8);
root->right = new Node(22);
root->left->left = new Node(4);
root->left->right = new Node(12);
root->left->right->left = new Node(10);
root->left->right->right = new Node(14);
root->right->right = new Node(25);
vector<int> boundary = boundaryTraversal(root);
for (int x : boundary)
cout << x << " ";
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
// Java implementation for Boundary Traversal of Binary Tree
// using Iteration with Morris Traversal
import java.util.ArrayList;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
//Driver Code Ends
static boolean isLeaf(Node node) {
return node.left == null && node.right == null;
}
// Function to collect the left boundary nodes
static void collectBoundaryLeft(Node root, ArrayList<Integer> res) {
if (root == null)
return;
Node curr = root;
while (!isLeaf(curr)) {
res.add(curr.data);
if (curr.left != null)
curr = curr.left;
else
curr = curr.right;
}
}
// Function to collect the leaf nodes using Morris Traversal
static void collectLeaves(Node root, ArrayList<Integer> res) {
Node current = root;
while (current != null) {
if (current.left == null) {
// If it's a leaf node
if (current.right == null)
res.add(current.data);
current = current.right;
}
else {
// Find the inorder predecessor
Node predecessor = current.left;
while (predecessor.right != null && predecessor.right != current) {
predecessor = predecessor.right;
}
if (predecessor.right == null) {
predecessor.right = current;
current = current.left;
}
else {
// If it's predecessor is a leaf node
if (predecessor.left == null)
res.add(predecessor.data);
predecessor.right = null;
current = current.right;
}
}
}
}
// Function to collect the right boundary nodes
static void collectBoundaryRight(Node root, ArrayList<Integer> res) {
if (root == null)
return;
Node curr = root;
ArrayList<Integer> temp = new ArrayList<>();
while (!isLeaf(curr)) {
temp.add(curr.data);
if (curr.right != null)
curr = curr.right;
else
curr = curr.left;
}
for (int i = temp.size() - 1; i >= 0; --i)
res.add(temp.get(i));
}
// Function to perform boundary traversal
static ArrayList<Integer> boundaryTraversal(Node root) {
ArrayList<Integer> res = new ArrayList<>();
if (root == null)
return res;
// Add root data if it's not a leaf
if (!isLeaf(root))
res.add(root.data);
// Collect left boundary
collectBoundaryLeft(root.left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root.right, res);
return res;
}
//Driver Code Starts
public static void main(String[] args) {
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
root.right.right = new Node(25);
ArrayList<Integer> boundary = boundaryTraversal(root);
for (int x : boundary)
System.out.print(x + " ");
}
}
//Driver Code Ends
Python
#Driver Code Starts
# Python implementation for Boundary Traversal
# of Binary Tree using Iteration with Morris Traversal
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
#Driver Code Ends
# Helper function to check if a node is a leaf
def isLeaf(node):
return node.left is None and node.right is None
# Function to collect the left boundary nodes
def collectBoundaryLeft(root, res):
if root is None:
return
curr = root
while not isLeaf(curr):
res.append(curr.data)
if curr.left:
curr = curr.left
else:
curr = curr.right
# Function to collect the leaf nodes using Morris Traversal
def collectLeaves(root, res):
current = root
while current:
if current.left is None:
# To include Rightmost leaf node
if current.right is None:
res.append(current.data)
current = current.right
else:
# Find the inorder predecessor
predecessor = current.left
while predecessor.right and predecessor.right != current:
predecessor = predecessor.right
if predecessor.right is None:
predecessor.right = current
current = current.left
else:
# If it's predecessor is a leaf node
if (predecessor.left is None) :
res.append(predecessor.data)
predecessor.right = None
current = current.right
# Function to collect the right boundary nodes
def collectBoundaryRight(root, res):
if root is None:
return
curr = root
temp = []
while not isLeaf(curr):
temp.append(curr.data)
if curr.right:
curr = curr.right
else:
curr = curr.left
res.extend(reversed(temp))
# Function to perform boundary traversal
def boundaryTraversal(root):
res = []
if not root:
return res
# Add root data if it's not a leaf
if not isLeaf(root):
res.append(root.data)
# Collect left boundary
collectBoundaryLeft(root.left, res)
# Collect leaf nodes
collectLeaves(root, res)
# Collect right boundary
collectBoundaryRight(root.right, res)
return res
#Driver Code Starts
if __name__ == "__main__":
# Hardcoded Binary tree
# 20
# / \
# 8 22
# / \ \
# 4 12 25
# / \
# 10 14
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
root.right.right = Node(25)
boundary = boundaryTraversal(root)
print(" ".join(map(str, boundary)))
#Driver Code Ends
C#
//Driver Code Starts
// C# implementation for Boundary Traversal of Binary Tree
// using Iteration with Morris Traversal
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
//Driver Code Ends
// Helper function to check if a node is a leaf
static bool isLeaf(Node node) {
return node.left == null && node.right == null;
}
// Function to collect the left boundary nodes
static void collectBoundaryLeft(Node root, List<int> res) {
if (root == null)
return;
Node curr = root;
while (!isLeaf(curr)) {
res.Add(curr.data);
if (curr.left != null)
curr = curr.left;
else
curr = curr.right;
}
}
// Function to collect the leaf nodes using Morris Traversal
static void collectLeaves(Node root, List<int> res) {
Node current = root;
while (current != null) {
if (current.left == null) {
// If it's a leaf node
if (current.right == null)
res.Add(current.data);
current = current.right;
} else {
// Find the inorder predecessor
Node predecessor = current.left;
while (predecessor.right != null && predecessor.right != current) {
predecessor = predecessor.right;
}
if (predecessor.right == null) {
predecessor.right = current;
current = current.left;
}
else {
// If it's predecessor is a leaf node
if (predecessor.left == null)
res.Add(predecessor.data);
predecessor.right = null;
current = current.right;
}
}
}
}
// Function to collect the right boundary nodes
static void collectBoundaryRight(Node root, List<int> res) {
if (root == null)
return;
Node curr = root;
List<int> temp = new List<int>();
while (!isLeaf(curr)) {
temp.Add(curr.data);
if (curr.right != null)
curr = curr.right;
else
curr = curr.left;
}
temp.Reverse();
res.AddRange(temp);
}
// Function to perform boundary traversal
static List<int> boundaryTraversal(Node root) {
List<int> res = new List<int>();
if (root == null)
return res;
// Add root data if it's not a leaf
if (!isLeaf(root))
res.Add(root.data);
// Collect left boundary
collectBoundaryLeft(root.left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root.right, res);
return res;
}
//Driver Code Starts
static void Main(string[] args) {
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
root.right.right = new Node(25);
List<int> boundary = boundaryTraversal(root);
foreach (int x in boundary) {
Console.Write(x + " ");
}
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
// JavaScript implementation for Boundary Traversal
// of Binary Tree using Iteration with Morris Traversal
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
//Driver Code Ends
}
// Helper function to check if a node is a leaf
function isLeaf(node) {
return !node.left && !node.right;
}
// Function to collect the left boundary nodes
function collectBoundaryLeft(root, res) {
if (root === null) return;
let curr = root;
while (!isLeaf(curr)) {
res.push(curr.data);
if (curr.left) curr = curr.left;
else curr = curr.right;
}
}
// Function to collect the leaf nodes using Morris Traversal
function collectLeaves(root, res) {
let current = root;
while (current) {
if (!current.left) {
// If it's a leaf node
if (!current.right)
res.push(current.data);
current = current.right;
}
else {
// Find the inorder predecessor
let predecessor = current.left;
while (predecessor.right && predecessor.right !== current) {
predecessor = predecessor.right;
}
if (!predecessor.right) {
predecessor.right = current;
current = current.left;
}
else {
// If it's predecessor is a leaf node
if (!predecessor.left)
res.push(predecessor.data);
predecessor.right = null;
current = current.right;
}
}
}
}
// Function to collect the right boundary nodes
function collectBoundaryRight(root, res) {
if (root === null) return;
let curr = root;
const temp = [];
while (!isLeaf(curr)) {
temp.push(curr.data);
if (curr.right) curr = curr.right;
else curr = curr.left;
}
res.push(...temp.reverse());
}
// Function to perform boundary traversal
function boundaryTraversal(root) {
const res = [];
if (!root) return res;
// Add root data if it's not a leaf
if (!isLeaf(root)) res.push(root.data);
// Collect left boundary
collectBoundaryLeft(root.left, res);
// Collect leaf nodes
collectLeaves(root, res);
// Collect right boundary
collectBoundaryRight(root.right, res);
return res;
}
//Driver Code Starts
// Driver code
// Hardcoded Binary tree
// 20
// / \
// 8 22
// / \ \
// 4 12 25
// / \
// 10 14
const root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
root.right.right = new Node(25);
const boundary = boundaryTraversal(root);
console.log(boundary.join(" "));
//Driver Code Ends
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem