Duplicate within K Distance in an Array
Last Updated :
04 Feb, 2025
Given an integer array arr[] and an integer k, determine whether there exist two indices i and j such that arr[i] == arr[j] and |i - j| ≤ k. If such a pair exists, return 'Yes', otherwise return 'No'.
Examples:
Input: k = 3, arr[] = [1, 2, 3, 4, 1, 2, 3, 4]
Output: No
Explanation: Each element in the given array arr[] appears twice and the distance between every element and its duplicate is 4.
Input: k = 3, arr[] = [1, 2, 3, 1, 4, 5]
Output: Yes
Explanation: 1 is present at index 0 and 3.
Input: k = 3, arr[] = [1, 2, 3, 4, 5]
Output: No
Explanation: There is no duplicate element in arr[].
[Naive Approach] - O(n * k) Time and O(1) Space
The idea is to run two loops. The outer loop picks every index i as a starting index, and the inner loop compares all elements which are within k distance of i, i.e. i + k.
Below is given the implementation:
C++
#include <bits/stdc++.h>
using namespace std;
bool checkDuplicatesWithinK(vector<int> &arr, int k)
{
int n = arr.size();
// Traverse for every element
for (int i = 0; i < n; i++) {
// Traverse next k elements
for (int c = 1; c <= k && (i + c) < n; c++) {
int j = i + c;
// If we find one more occurrence
// within k
if (arr[i] == arr[j])
return true;
}
}
return false;
}
// Driver method to test above method
int main()
{
vector<int> arr = {10, 5, 3, 4, 3, 5, 6};
if (checkDuplicatesWithinK(arr, 3))
cout << "Yes";
else
cout << "No";
return 0;
}
C
#include <stdio.h>
int checkDuplicatesWithinK(int arr[], int n, int k)
{
// Traverse for every element
for (int i = 0; i < n; i++) {
// Traverse next k elements
for (int c = 1; c <= k && (i + c) < n; c++) {
int j = i + c;
// If we find one more occurrence within k
if (arr[i] == arr[j])
return 1;
}
}
return 0;
}
// Driver method to test above method
int main()
{
int arr[] = {10, 5, 3, 4, 3, 5, 6};
int n = sizeof(arr) / sizeof(arr[0]);
printf("%s\n", checkDuplicatesWithinK(arr, n, 3) ? "Yes" : "No");
return 0;
}
Java
import java.util.Arrays;
class GfG {
static boolean checkDuplicatesWithinK(int[] arr, int k) {
int n = arr.length;
// Traverse for every element
for (int i = 0; i < n; i++) {
// Traverse next k elements
for (int c = 1; c <= k && (i + c) < n; c++) {
int j = i + c;
// If we find one more occurrence within k
if (arr[i] == arr[j])
return true;
}
}
return false;
}
public static void main(String[] args) {
int[] arr = {10, 5, 3, 4, 3, 5, 6};
System.out.println(checkDuplicatesWithinK(arr, 3) ? "Yes" : "No");
}
}
Python
def check_duplicates_within_k(arr, k):
n = len(arr)
# Traverse for every element
for i in range(n):
# Traverse next k elements
for c in range(1, k + 1):
j = i + c
# If we find one more occurrence within k
if j < n and arr[i] == arr[j]:
return True
return False
# Driver method to test above method
arr = [10, 5, 3, 4, 3, 5, 6]
print("Yes" if check_duplicates_within_k(arr, 3) else "No")
C#
using System;
class GfG
{
static bool CheckDuplicatesWithinK(int[] arr, int k)
{
int n = arr.Length;
// Traverse for every element
for (int i = 0; i < n; i++)
{
// Traverse next k elements
for (int c = 1; c <= k && (i + c) < n; c++)
{
int j = i + c;
// If we find one more occurrence within k
if (arr[i] == arr[j])
return true;
}
}
return false;
}
public static void Main()
{
int[] arr = { 10, 5, 3, 4, 3, 5, 6 };
Console.WriteLine(CheckDuplicatesWithinK(arr, 3) ? "Yes" : "No");
}
}
JavaScript
function checkDuplicatesWithinK(arr, k) {
const n = arr.length;
// Traverse for every element
for (let i = 0; i < n; i++) {
// Traverse next k elements
for (let c = 1; c <= k && (i + c) < n; c++) {
const j = i + c;
// If we find one more occurrence within k
if (arr[i] === arr[j]) {
return true;
}
}
}
return false;
}
// Driver method to test above method
const arr = [10, 5, 3, 4, 3, 5, 6];
console.log(checkDuplicatesWithinK(arr, 3) ? "Yes" : "No");
Time Complexity: O(n * k), for each element of the array arr[], we are iterating up to next k elements.
Auxiliary Space: O(1)
[Expected Approach] - Using HashSet - O(n) Time and O(k) Space
The idea is to use HashSet to store elements of the array arr[] and check if there is any duplicate present within a k distance. Also remove elements that are present at more than k distance from the current element. Following is a detailed algorithm.
- Create an empty HashSet.
- Traverse all elements from left to right. Let the current element be 'arr[i]'
- If the current element 'arr[i]' is present in a HashSet, then return true.
- Else add arr[i] to hash and remove arr[i-k] from hash if i >= k
Below is given the implementation:
C++
#include <bits/stdc++.h>
using namespace std;
// C++ program to Check if a given array contains duplicate
// elements within k distance from each other
bool checkDuplicatesWithinK(vector<int> &arr, int k) {
// Creates an empty hashset
unordered_set<int> s;
// Traverse the input array
for (int i = 0; i < arr.size(); i++) {
// If already present in hash, then we found
// a duplicate within k distance
if (s.find(arr[i]) != s.end())
return true;
// Add this item to hashset
s.insert(arr[i]);
// Remove the k+1 distant item
if (i >= k)
s.erase(arr[i - k]);
}
return false;
}
// Driver method to test above method
int main () {
vector<int> arr = {10, 5, 3, 4, 3, 5, 6};
if (checkDuplicatesWithinK(arr, 3))
cout << "Yes";
else
cout << "No";
}
Java
/* Java program to Check if a given array contains duplicate
elements within k distance from each other */
import java.util.*;
class Main
{
static boolean checkDuplicatesWithinK(int arr[], int k)
{
// Creates an empty hashset
HashSet<Integer> set = new HashSet<>();
// Traverse the input array
for (int i=0; i<arr.length; i++)
{
// If already present n hash, then we found
// a duplicate within k distance
if (set.contains(arr[i]))
return true;
// Add this item to hashset
set.add(arr[i]);
// Remove the k+1 distant item
if (i >= k)
set.remove(arr[i-k]);
}
return false;
}
// Driver method to test above method
public static void main (String[] args)
{
int arr[] = {10, 5, 3, 4, 3, 5, 6};
if (checkDuplicatesWithinK(arr, 3))
System.out.println("Yes");
else
System.out.println("No");
}
}
Python
# Python 3 program to Check if a given array
# contains duplicate elements within k distance
# from each other
def checkDuplicatesWithinK(arr, n, k):
# Creates an empty list
myset = set()
# Traverse the input array
for i in range(n):
# If already present n hash, then we
# found a duplicate within k distance
if arr[i] in myset:
return True
# Add this item to hashset
myset.add(arr[i])
# Remove the k+1 distant item
if (i >= k):
myset.remove(arr[i - k])
return False
# Driver Code
if __name__ == "__main__":
arr = [10, 5, 3, 4, 3, 5, 6]
n = len(arr)
if (checkDuplicatesWithinK(arr, n, 3)):
print("Yes")
else:
print("No")
C#
/* C# program to Check if a given
array contains duplicate elements
within k distance from each other */
using System;
using System.Collections.Generic;
class GFG
{
static bool checkDuplicatesWithinK(int []arr, int k)
{
// Creates an empty hashset
HashSet<int> set = new HashSet<int>();
// Traverse the input array
for (int i = 0; i < arr.Length; i++)
{
// If already present n hash, then we found
// a duplicate within k distance
if (set.Contains(arr[i]))
return true;
// Add this item to hashset
set.Add(arr[i]);
// Remove the k+1 distant item
if (i >= k)
set.Remove(arr[i - k]);
}
return false;
}
// Driver code
public static void Main (String[] args)
{
int []arr = {10, 5, 3, 4, 3, 5, 6};
if (checkDuplicatesWithinK(arr, 3))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
JavaScript
// JavaScript program to Check if a given array contains duplicate
// elements within k distance from each other
function checkDuplicatesWithinK(arr, k) {
// Creates an empty hashset
const s = new Set();
// Traverse the input array
for (let i = 0; i < arr.length; i++) {
// If already present in hash, then we found
// a duplicate within k distance
if (s.has(arr[i]))
return true;
// Add this item to hashset
s.add(arr[i]);
// Remove the k+1 distant item
if (i >= k)
s.delete(arr[i - k]);
}
return false;
}
// Driver method to test above method
const arr = [10, 5, 3, 4, 3, 5, 6];
if (checkDuplicatesWithinK(arr, 3))
console.log('Yes');
else
console.log('No');
Time Complexity: O(n), as we are iterating through elements only once.
Auxiliary Space: O(k), to store the k elements in HashSet.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read