Check if sum of the given array can be reduced to 0 by reducing array elements by K Last Updated : 08 Apr, 2021 Comments Improve Suggest changes Like Article Like Report Given an array arr[] consisting of N integers and an integer K, the task is to check if the sum of the array can be reduced to 0 by subtracting array elements by K any number of times. Examples: Input: arr[ ]= {-3, 2, -1, 5, 1}, K=2Output: "Yes"Explanation: Sum of the array is 4. Therefore, decreasing two elements at any index by K( = 2), makes the sum of the array 0.Input: arr[ ]= {1, -6, 2, 2}, K=1Output: "No" Approach: Follow the steps below to solve the problem: Traverse the array and calculate the sum of the given array.According to the value of the sum, the following cases arise:If sum = 0: No operation is required. Therefore, the answer is "Yes".If sum > 0: Sum can be reduced to 0 only if sum is a multiple of K. If sum is not a multiple of K, print "No". Otherwise, print "Yes".If sum < 0: Simply print "No". Below is the implementation of the above approach: C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if the // sum can be made 0 or not int sumzero(int arr[], int N, int K) { // Stores sum of array elements int sum = 0; // Traverse the array for (int i = 0; i < N; i++) { sum += arr[i]; } if (sum == 0) cout << "Yes"; else if (sum > 0) { if (sum % K == 0) cout << "Yes"; else cout << "No"; } else cout << "No"; return 0; } // Driver Code int main() { int K, N; // Given array arr[] int arr1[] = { 1, -6, 2, 2 }; K = 1; N = sizeof(arr1) / sizeof(arr1[0]); sumzero(arr1, N, K); return 0; } Java // Java program for the above approach import java.util.*; class GFG{ // Function to check if the // sum can be made 0 or not static int sumzero(int arr[], int N, int K) { // Stores sum of array elements int sum = 0; // Traverse the array for (int i = 0; i < N; i++) { sum += arr[i]; } if (sum == 0) System.out.print("Yes"); else if (sum > 0) { if (sum % K == 0) System.out.print("Yes"); else System.out.print("No"); } else System.out.print("No"); return 0; } // Driver Code public static void main(String[] args) { int K, N; // Given array arr[] int arr1[] = { 1, -6, 2, 2 }; K = 1; N = arr1.length; sumzero(arr1, N, K); } } // This code is contributed by 29AjayKumar Python3 # Python3 program for the above approach # Function to check if the # sum can be made 0 or not def sumzero(arr, N, K) : # Stores sum of array elements sum = 0; # Traverse the array for i in range(N) : sum += arr[i]; if (sum == 0) : print("Yes"); elif (sum > 0) : if (sum % K == 0) : print("Yes"); else : print("No"); else : print("No"); # Driver Code if __name__ == "__main__" : # Given array arr[] arr1 = [ 1, -6, 2, 2 ]; K = 1; N = len(arr1); sumzero(arr1, N, K); # This code is contributed by AnkThon C# // C# program for the above approach using System; class GFG{ // Function to check if the // sum can be made 0 or not static int sumzero(int []arr, int N, int K) { // Stores sum of array elements int sum = 0; // Traverse the array for (int i = 0; i < N; i++) { sum += arr[i]; } if (sum == 0) Console.Write("Yes"); else if (sum > 0) { if (sum % K == 0) Console.Write("Yes"); else Console.Write("No"); } else Console.Write("No"); return 0; } // Driver Code public static void Main(String[] args) { int K, N; // Given array []arr int []arr1 = { 1, -6, 2, 2 }; K = 1; N = arr1.Length; sumzero(arr1, N, K); } } // This code is contributed by 29AjayKumar JavaScript <script> // JavaScript program for the above approach // Function to check if the // sum can be made 0 or not function sumzero(arr , N , K) { // Stores sum of array elements var sum = 0; // Traverse the array for (i = 0; i < N; i++) { sum += arr[i]; } if (sum == 0) document.write("Yes"); else if (sum > 0) { if (sum % K == 0) document.write("Yes"); else document.write("No"); } else document.write("No"); return 0; } // Driver Code var K, N; // Given array arr var arr1 = [ 1, -6, 2, 2 ]; K = 1; N = arr1.length; sumzero(arr1, N, K); // This code contributed by gauravrajput1 </script> Output: No Time Complexity: O(N)Auxiliary Space: O(1) Comment More infoAdvertise with us Next Article Check if sum of the given array can be reduced to 0 by reducing array elements by K adarsh_sinhg Follow Improve Article Tags : Greedy Mathematical DSA Arrays array-traversal-question +1 More Practice Tags : ArraysGreedyMathematical Similar Reads DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on 7 min read Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s 12 min read Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge 14 min read Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir 8 min read Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st 2 min read Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta 15+ min read Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc 15 min read Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T 9 min read Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example 12 min read Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an 8 min read Like