Open In App

Choose an integer K such that maximum of the xor values of K with all Array elements is minimized

Last Updated : 12 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array A consisting of N non-negative integers, the task is to choose an integer K such that the maximum of the xor values of K with all array elements is minimized. In other words find the minimum possible value of Z, where Z = max(A[i] xor K), 0 <= i <= n-1, for some value of K. 
Examples: 
 

Input: A = [1, 2, 3] 
Output:
Explanation: 
On choosing K = 3, max(A[i] xor 3) = 2, and this is the minimum possible value.
Input: A = [3, 2, 5, 6] 
Output:
 


 


Approach: To solve the problem mentioned above we will use recursion. We will start from the most significant bit in the recursive function. 
 

  • In the recursive step, split the element into two sections - one having the current bit on and the other with current bit off. If any of the sections doesn't have a single element, then this particular bit for K can be chosen such that the final xor value has 0 at this bit position (since our aim is to minimise this value) and then proceed to the next bit in the next recursive step. 
     
  • If both the sections have some elements, then explore both the possibilities by placing 0 and 1 at this bit position and calculating the answer using the corresponding section in next recursive call. 
    Let answer_on be the value if 1 is placed and answer_off be the value if 0 is placed at this position (pos). Since both sections are non empty whichever bit we choose for K, 2pos will be added to the final value. 
    For each recursive step: 
     

answer = min(answer_on, answer_off) + 2pos 
 


 


Below is the implementation of the above approach: 
 

C++
// C++ implementation to find Minimum
// possible value of the maximum xor
// in an array by choosing some integer

#include <bits/stdc++.h>
using namespace std;

// Function to calculate Minimum possible
// value of the Maximum XOR in an array
int calculate(vector<int>& section, int pos)
{
    // base case
    if (pos < 0)
        return 0;

    // Divide elements into two sections
    vector<int> on_section, off_section;

    // Traverse all elements of current
    // section and divide in two groups
    for (auto el : section) {
        if (((el >> pos) & 1) == 0)
            off_section.push_back(el);

        else
            on_section.push_back(el);
    }

    // Check if one of the sections is empty
    if (off_section.size() == 0)
        return calculate(on_section, pos - 1);

    if (on_section.size() == 0)
        return calculate(off_section, pos - 1);

    // explore both the possibilities using recursion
    return min(calculate(off_section, pos - 1),
               calculate(on_section, pos - 1))
           + (1 << pos);
}

// Function to calculate minimum XOR value
int minXorValue(int a[], int n)
{
    vector<int> section;
    for (int i = 0; i < n; i++)
        section.push_back(a[i]);

    // Start recursion from the
    // most significant pos position
    return calculate(section, 30);
}

// Driver code
int main()
{
    int N = 4;

    int A[N] = { 3, 2, 5, 6 };

    cout << minXorValue(A, N);

    return 0;
}
Java
// Java implementation to find Minimum
// possible value of the maximum xor
// in an array by choosing some integer
import java.util.*;

class GFG{

// Function to calculate Minimum possible
// value of the Maximum XOR in an array
static int calculate(Vector<Integer> section, int pos)
{

    // Base case
    if (pos < 0)
        return 0;

    // Divide elements into two sections
    Vector<Integer> on_section = new Vector<Integer>(), 
                   off_section = new Vector<Integer>();

    // Traverse all elements of current
    // section and divide in two groups
    for(int el : section) 
    {
       if (((el >> pos) & 1) == 0)
           off_section.add(el);
       else
           on_section.add(el);
    }

    // Check if one of the sections is empty
    if (off_section.size() == 0)
        return calculate(on_section, pos - 1);

    if (on_section.size() == 0)
        return calculate(off_section, pos - 1);

    // Explore both the possibilities using recursion
    return Math.min(calculate(off_section, pos - 1),
                    calculate(on_section, pos - 1)) +
                             (1 << pos);
}

// Function to calculate minimum XOR value
static int minXorValue(int a[], int n)
{
    Vector<Integer> section = new Vector<Integer>();

    for(int i = 0; i < n; i++)
       section.add(a[i]);

    // Start recursion from the
    // most significant pos position
    return calculate(section, 30);
}

// Driver code
public static void main(String[] args)
{
    int N = 4;
    int A[] = { 3, 2, 5, 6 };

    System.out.print(minXorValue(A, N));
}
}

// This code is contributed by Princi Singh
Python3
# Python3 implementation to find Minimum
# possible value of the maximum xor
# in an array by choosing some integer
 
# Function to calculate Minimum possible
# value of the Maximum XOR in an array

def calculate(section, pos):

    # base case
    if (pos < 0):
        return 0
 
    # Divide elements into two sections
    on_section = []
    off_section = []
 
    # Traverse all elements of current
    # section and divide in two groups
    for el in section:
        if (((el >> pos) & 1) == 0):
            off_section.append(el)
 
        else:
            on_section.append(el)
 
    # Check if one of the sections is empty
    if (len(off_section) == 0):
        return calculate(on_section, pos - 1)
 
    if (len(on_section) == 0):
        return calculate(off_section, pos - 1)
 
    # explore both the possibilities using recursion
    return min(calculate(off_section, pos - 1),
               calculate(on_section, pos - 1))+ (1 << pos)
 
# Function to calculate minimum XOR value
def minXorValue(a, n):
    section = []
    for i in range( n):
        section.append(a[i]);
 
    # Start recursion from the
    # most significant pos position
    return calculate(section, 30)
 
# Driver code
if __name__ == "__main__":
    N = 4
 
    A = [ 3, 2, 5, 6 ]
 
    print(minXorValue(A, N))
 
# This code is contributed by chitranayal    
C#
// C# implementation to find minimum
// possible value of the maximum xor
// in an array by choosing some integer
using System;
using System.Collections.Generic;

class GFG{

// Function to calculate minimum possible
// value of the maximum XOR in an array
static int calculate(List<int> section, int pos)
{
    
    // Base case
    if (pos < 0)
        return 0;

    // Divide elements into two sections
    List<int> on_section = new List<int>(), 
             off_section = new List<int>();

    // Traverse all elements of current
    // section and divide in two groups
    foreach(int el in section) 
    {
        if (((el >> pos) & 1) == 0)
            off_section.Add(el);
        else
            on_section.Add(el);
    }

    // Check if one of the sections is empty
    if (off_section.Count == 0)
        return calculate(on_section, pos - 1);

    if (on_section.Count == 0)
        return calculate(off_section, pos - 1);

    // Explore both the possibilities using recursion
    return Math.Min(calculate(off_section, pos - 1),
                    calculate(on_section, pos - 1)) +
                             (1 << pos);
}

// Function to calculate minimum XOR value
static int minXorValue(int []a, int n)
{
    List<int> section = new List<int>();

    for(int i = 0; i < n; i++)
       section.Add(a[i]);

    // Start recursion from the
    // most significant pos position
    return calculate(section, 30);
}

// Driver code
public static void Main(String[] args)
{
    int N = 4;
    int []A = { 3, 2, 5, 6 };

    Console.Write(minXorValue(A, N));
}
}

// This code is contributed by Princi Singh
JavaScript
<script>
// Javascript implementation to find Minimum
// possible value of the maximum xor
// in an array by choosing some integer

// Function to calculate Minimum possible
// value of the Maximum XOR in an array
function calculate(section, pos)
{
    // base case
    if (pos < 0)
        return 0;

    // Divide elements into two sections
    let on_section = [], off_section = [];

    // Traverse all elements of current
    // section and divide in two groups
    for (let el = 0; el < section.length; el++) {
        if (((section[el] >> pos) & 1) == 0)
            off_section.push(section[el]);

        else
            on_section.push(section[el]);
    }

    // Check if one of the sections is empty
    if (off_section.length == 0)
        return calculate(on_section, pos - 1);

    if (on_section.length == 0)
        return calculate(off_section, pos - 1);

    // explore both the possibilities using recursion
    return Math.min(calculate(off_section, pos - 1),
               calculate(on_section, pos - 1))
           + (1 << pos);
}

// Function to calculate minimum XOR value
function minXorValue(a, n)
{
    let section = [];
    for (let i = 0; i < n; i++)
        section.push(a[i]);

    // Start recursion from the
    // most significant pos position
    return calculate(section, 30);
}

// Driver code
    let N = 4;

    let A = [ 3, 2, 5, 6 ];

    document.write(minXorValue(A, N));

</script>

Output: 
5

 

Time Complexity: O(N * log(max(Ai))
Space complexity: O(NlogN)


Article Tags :

Similar Reads