Convert a Binary Tree to a Circular Doubly Link List
Last Updated :
10 Jan, 2023
Given a Binary Tree, convert it to a Circular Doubly Linked List (In-Place).
- The left and right pointers in nodes are to be used as previous and next pointers respectively in the converted Circular Linked List.
- The order of nodes in the List must be the same as in Inorder for the given Binary Tree.
- The first node of Inorder traversal must be the head node of the Circular List.
Examples:

Convert a Binary Tree to a Circular Doubly Link List using Recursion:
The idea is to make a general-purpose function that concatenates two given circular doubly lists
Follow the steps below to solve the problem:
- Recursively convert the left subtree to a circular DLL. Let the converted list be leftList.
- Recursively convert the right subtree to a circular DLL. Let the converted list be rightList.
- Make a circular linked list of roots of the tree, and make the left and right root points to themselves.
- Concatenate leftList with the list of the single root node.
- Concatenate the list produced in the step above with rightList.
Note: The above approach traverses the tree in a Postorder fashion. We can traverse in an inorder fashion also. We can first concatenate left subtree and root, then recur for the right subtree and concatenate the result with left-root concatenation.
How do Concatenate two circular DLLs?
- Get the last node of the left list. Retrieving the last node is an O(1) operation since the prev pointer of the head points to the last node of the list.
- Connect it with the first node of the right list
- Get the last node of the second list
- Connect it with the head of the list.
Below are implementations of the above idea:
C++
// C++ Program to convert a Binary Tree
// to a Circular Doubly Linked List
#include <iostream>
using namespace std;
// To represents a node of a Binary Tree
struct Node {
struct Node *left, *right;
int data;
};
// A function that appends rightList at the end
// of leftList.
Node* concatenate(Node* leftList, Node* rightList)
{
// If either of the list is empty
// then return the other list
if (leftList == NULL)
return rightList;
if (rightList == NULL)
return leftList;
// Store the last Node of left List
Node* leftLast = leftList->left;
// Store the last Node of right List
Node* rightLast = rightList->left;
// Connect the last node of Left List
// with the first Node of the right List
leftLast->right = rightList;
rightList->left = leftLast;
// Left of first node points to
// the last node in the list
leftList->left = rightLast;
// Right of last node refers to the first
// node of the List
rightLast->right = leftList;
return leftList;
}
// Function converts a tree to a circular Linked List
// and then returns the head of the Linked List
Node* bTreeToCList(Node* root)
{
if (root == NULL)
return NULL;
// Recursively convert left and right subtrees
Node* left = bTreeToCList(root->left);
Node* right = bTreeToCList(root->right);
// Make a circular linked list of single node
// (or root). To do so, make the right and
// left pointers of this node point to itself
root->left = root->right = root;
// Step 1 (concatenate the left list with the list
// with single node, i.e., current node)
// Step 2 (concatenate the returned list with the
// right List)
return concatenate(concatenate(left, root), right);
}
// Display Circular Link List
void displayCList(Node* head)
{
cout << "Circular Linked List is :\n";
Node* itr = head;
do {
cout << itr->data << " ";
itr = itr->right;
} while (head != itr);
cout << "\n";
}
// Create a new Node and return its address
Node* newNode(int data)
{
Node* temp = new Node();
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// Driver Program to test above function
int main()
{
Node* root = newNode(10);
root->left = newNode(12);
root->right = newNode(15);
root->left->left = newNode(25);
root->left->right = newNode(30);
root->right->left = newNode(36);
Node* head = bTreeToCList(root);
displayCList(head);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129)
C
// C Program to convert a Binary Tree
// to a Circular Doubly Linked List
#include <stdio.h>
#include <stdlib.h>
// To represents a node of a Binary Tree
typedef struct Node {
struct Node *left, *right;
int data;
} Node;
// A function that appends rightList at the end
// of leftList.
Node* concatenate(Node* leftList, Node* rightList)
{
// If either of the list is empty
// then return the other list
if (leftList == NULL)
return rightList;
if (rightList == NULL)
return leftList;
// Store the last Node of left List
Node* leftLast = leftList->left;
// Store the last Node of right List
Node* rightLast = rightList->left;
// Connect the last node of Left List
// with the first Node of the right List
leftLast->right = rightList;
rightList->left = leftLast;
// Left of first node points to
// the last node in the list
leftList->left = rightLast;
// Right of last node refers to the first
// node of the List
rightLast->right = leftList;
return leftList;
}
// Function converts a tree to a circular Linked List
// and then returns the head of the Linked List
Node* bTreeToCList(Node* root)
{
if (root == NULL)
return NULL;
// Recursively convert left and right subtrees
Node* left = bTreeToCList(root->left);
Node* right = bTreeToCList(root->right);
// Make a circular linked list of single node
// (or root). To do so, make the right and
// left pointers of this node point to itself
root->left = root->right = root;
// Step 1 (concatenate the left list with the list
// with single node, i.e., current node)
// Step 2 (concatenate the returned list with the
// right List)
return concatenate(concatenate(left, root), right);
}
// Display Circular Link List
void displayCList(Node* head)
{
printf("Circular Linked List is :\n");
Node* itr = head;
do {
printf("%d ", itr->data);
itr = itr->right;
} while (head != itr);
printf("\n");
}
// Create a new Node and return its address
Node* newNode(int data)
{
Node* temp = (Node*)malloc(sizeof(Node));
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// Driver Program to test above function
int main()
{
Node* root = newNode(10);
root->left = newNode(12);
root->right = newNode(15);
root->left->left = newNode(25);
root->left->right = newNode(30);
root->right->left = newNode(36);
Node* head = bTreeToCList(root);
displayCList(head);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129)
Java
// Java Program to convert a Binary Tree to a
// Circular Doubly Linked List
// Node class represents a Node of a Tree
class Node {
int val;
Node left, right;
public Node(int val)
{
this.val = val;
left = right = null;
}
}
// A class to represent a tree
class Tree {
Node root;
public Tree() { root = null; }
// concatenate both the lists and returns the head
// of the List
public Node concatenate(Node leftList, Node rightList)
{
// If either of the list is empty, then
// return the other list
if (leftList == null)
return rightList;
if (rightList == null)
return leftList;
// Store the last Node of left List
Node leftLast = leftList.left;
// Store the last Node of right List
Node rightLast = rightList.left;
// Connect the last node of Left List
// with the first Node of the right List
leftLast.right = rightList;
rightList.left = leftLast;
// left of first node refers to
// the last node in the list
leftList.left = rightLast;
// Right of last node refers to the first
// node of the List
rightLast.right = leftList;
// Return the Head of the List
return leftList;
}
// Method converts a tree to a circular
// Link List and then returns the head
// of the Link List
public Node bTreeToCList(Node root)
{
if (root == null)
return null;
// Recursively convert left and right subtrees
Node left = bTreeToCList(root.left);
Node right = bTreeToCList(root.right);
// Make a circular linked list of single node
// (or root). To do so, make the right and
// left pointers of this node point to itself
root.left = root.right = root;
// Step 1 (concatenate the left list with the list
// with single node, i.e., current node)
// Step 2 (concatenate the returned list with the
// right List)
return concatenate(concatenate(left, root), right);
}
// Display Circular Link List
public void display(Node head)
{
System.out.println("Circular Linked List is :");
Node itr = head;
do {
System.out.print(itr.val + " ");
itr = itr.right;
} while (itr != head);
System.out.println();
}
}
// Driver Code
class Main {
public static void main(String args[])
{
// Build the tree
Tree tree = new Tree();
tree.root = new Node(10);
tree.root.left = new Node(12);
tree.root.right = new Node(15);
tree.root.left.left = new Node(25);
tree.root.left.right = new Node(30);
tree.root.right.left = new Node(36);
// head refers to the head of the Link List
Node head = tree.bTreeToCList(tree.root);
// Display the Circular LinkedList
tree.display(head);
}
}
Python3
# Python3 Program to convert a Binary
# Tree to a Circular Doubly Linked List
class newNode:
def __init__(self, data):
self.data = data
self.left = self.right = None
# A function that appends rightList
# at the end of leftList.
def concatenate(leftList, rightList):
# If either of the list is empty
# then return the other list
if (leftList == None):
return rightList
if (rightList == None):
return leftList
# Store the last Node of left List
leftLast = leftList.left
# Store the last Node of right List
rightLast = rightList.left
# Connect the last node of Left List
# with the first Node of the right List
leftLast.right = rightList
rightList.left = leftLast
# Left of first node points to
# the last node in the list
leftList.left = rightLast
# Right of last node refers to
# the first node of the List
rightLast.right = leftList
return leftList
# Function converts a tree to a circular
# Linked List and then returns the head
# of the Linked List
def bTreeToCList(root):
if (root == None):
return None
# Recursively convert left and
# right subtrees
left = bTreeToCList(root.left)
right = bTreeToCList(root.right)
# Make a circular linked list of single
# node (or root). To do so, make the
# right and left pointers of this node
# point to itself
root.left = root.right = root
# Step 1 (concatenate the left list
# with the list with single
# node, i.e., current node)
# Step 2 (concatenate the returned list
# with the right List)
return concatenate(concatenate(left,
root), right)
# Display Circular Link List
def displayCList(head):
print("Circular Linked List is :")
itr = head
first = 1
while (head != itr or first):
print(itr.data, end=" ")
itr = itr.right
first = 0
print()
# Driver Code
if __name__ == '__main__':
root = newNode(10)
root.left = newNode(12)
root.right = newNode(15)
root.left.left = newNode(25)
root.left.right = newNode(30)
root.right.left = newNode(36)
head = bTreeToCList(root)
displayCList(head)
# This code is contributed by PranchalK
C#
// C# Program to convert a Binary Tree
// to a Circular Doubly Linked List
using System;
// Node class represents a Node of a Tree
public class Node {
public int val;
public Node left, right;
public Node(int val)
{
this.val = val;
left = right = null;
}
}
// A class to represent a tree
public class Tree {
internal Node root;
public Tree() { root = null; }
// concatenate both the lists
// and returns the head of the List
public virtual Node concatenate(Node leftList,
Node rightList)
{
// If either of the list is empty,
// then return the other list
if (leftList == null) {
return rightList;
}
if (rightList == null) {
return leftList;
}
// Store the last Node of left List
Node leftLast = leftList.left;
// Store the last Node of right List
Node rightLast = rightList.left;
// Connect the last node of Left List
// with the first Node of the right List
leftLast.right = rightList;
rightList.left = leftLast;
// left of first node refers to
// the last node in the list
leftList.left = rightLast;
// Right of last node refers to
// the first node of the List
rightLast.right = leftList;
// Return the Head of the List
return leftList;
}
// Method converts a tree to a circular
// Link List and then returns the head
// of the Link List
public virtual Node bTreeToCList(Node root)
{
if (root == null) {
return null;
}
// Recursively convert left
// and right subtrees
Node left = bTreeToCList(root.left);
Node right = bTreeToCList(root.right);
// Make a circular linked list of single
// node (or root). To do so, make the
// right and left pointers of this node
// point to itself
root.left = root.right = root;
// Step 1 (concatenate the left list with
// the list with single node,
// i.e., current node)
// Step 2 (concatenate the returned list
// with the right List)
return concatenate(concatenate(left, root), right);
}
// Display Circular Link List
public virtual void display(Node head)
{
Console.WriteLine("Circular Linked List is :");
Node itr = head;
do {
Console.Write(itr.val + " ");
itr = itr.right;
} while (itr != head);
Console.WriteLine();
}
}
// Driver Code
public class GFG {
public static void Main(string[] args)
{
// Build the tree
Tree tree = new Tree();
tree.root = new Node(10);
tree.root.left = new Node(12);
tree.root.right = new Node(15);
tree.root.left.left = new Node(25);
tree.root.left.right = new Node(30);
tree.root.right.left = new Node(36);
// head refers to the head of the Link List
Node head = tree.bTreeToCList(tree.root);
// Display the Circular LinkedList
tree.display(head);
}
}
// This code is contributed by Shrikant13
JavaScript
<script>
// javascript Program to convert a Binary Tree to a
// Circular Doubly Linked List
// Node class represents a Node of a Tree
class Node {
constructor(val) {
this.val = val;
this.left = null;
this.right = null;
}
}
// A class to represent a
var root = null;
// concatenate both the lists and returns the head
// of the List
function concatenate(leftList, rightList) {
// If either of the list is empty, then
// return the other list
if (leftList == null)
return rightList;
if (rightList == null)
return leftList;
// Store the last Node of left List
var leftLast = leftList.left;
// Store the last Node of right List
var rightLast = rightList.left;
// Connect the last node of Left List
// with the first Node of the right List
leftLast.right = rightList;
rightList.left = leftLast;
// left of first node refers to
// the last node in the list
leftList.left = rightLast;
// Right of last node refers to the first
// node of the List
rightLast.right = leftList;
// Return the Head of the List
return leftList;
}
// Method converts a to a circular
// Link List and then returns the head
// of the Link List
function bTreeToCList(root) {
if (root == null)
return null;
// Recursively convert left and right subtrees
var left = bTreeToCList(root.left);
var right = bTreeToCList(root.right);
// Make a circular linked list of single node
// (or root). To do so, make the right and
// left pointers of this node point to itself
root.left = root.right = root;
// Step 1 (concatenate the left list with the list
// with single node, i.e., current node)
// Step 2 (concatenate the returned list with the
// right List)
return concatenate(concatenate(left, root), right);
}
// Display Circular Link List
function display(head) {
document.write("Circular Linked List is :<br/>");
var itr = head;
do {
document.write(itr.val + " ");
itr = itr.right;
} while (itr != head);
document.write();
}
// Driver Code
// Build the
root = new Node(10);
root.left = new Node(12);
root.right = new Node(15);
root.left.left = new Node(25);
root.left.right = new Node(30);
root.right.left = new Node(36);
// head refers to the head of the Link List
var head = bTreeToCList(root);
// Display the Circular LinkedList
display(head);
// This code contributed by umadevi9616
</script>
OutputCircular Linked List is :
25 12 30 10 36 15
Time Complexity: O(N), As every node is visited at most once.
Auxiliary space: O(log N), The extra space is used in the recursion call stack which can grow up to a maximum size of logN as it is a binary tree.
Convert a Binary Tree to a Circular Doubly Link List by Inorder Traversal:
The idea is to do in-order traversal of the binary tree. While doing inorder traversal, keep track of the previously visited node in a variable, say prev. For every visited node, make it the next of the prev and set previous of this node as prev.
Follow the steps below to solve the problem:
Below is the implementation of the above approach.
C++
// A C++ program for in-place conversion of Binary Tree to
// CDLL
#include <iostream>
using namespace std;
/* A binary tree node has - data , left and right pointers
*/
struct Node {
int data;
Node* left;
Node* right;
};
// A utility function that converts given binary tree to
// a doubly linked list
// root --> the root of the binary tree
// head --> head of the created doubly linked list
Node* BTree2DoublyLinkedList(Node* root, Node** head)
{
// Base case
if (root == NULL)
return root;
// Initialize previously visited node as NULL. This is
// static so that the same value is accessible in all
// recursive calls
static Node* prev = NULL;
// Recursively convert left subtree
BTree2DoublyLinkedList(root->left, head);
// Now convert this node
if (prev == NULL)
*head = root;
else {
root->left = prev;
prev->right = root;
}
prev = root;
// Finally convert right subtree
BTree2DoublyLinkedList(root->right, head);
return prev;
}
// A simple recursive function to convert a given Binary
// tree to Circular Doubly Linked List using a utility
// function root --> Root of Binary Tree tail --> Pointer to
// tail node of created circular doubly linked list
Node* BTree2CircularDoublyLinkedList(Node* root)
{
Node* head = NULL;
Node* tail = BTree2DoublyLinkedList(root, &head);
// make the changes to convert a DLL to CDLL
tail->right = head;
head->left = tail;
// return the head of the created CDLL
return head;
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
Node* newNode(int data)
{
Node* new_node = new Node;
new_node->data = data;
new_node->left = new_node->right = NULL;
return (new_node);
}
/* Function to print nodes in a given circular doubly linked
* list */
void printList(Node* head)
{
if (head == NULL)
return;
Node* ptr = head;
do {
cout << ptr->data << " ";
ptr = ptr->right;
} while (ptr != head);
}
/* Driver program to test above functions*/
int main()
{
// Let us create the tree shown in above diagram
Node* root = newNode(10);
root->left = newNode(12);
root->right = newNode(15);
root->left->left = newNode(25);
root->left->right = newNode(30);
root->right->left = newNode(36);
// Convert to DLL
Node* head = BTree2CircularDoublyLinkedList(root);
// Print the converted list
printList(head);
return 0;
}
// This code was contributed by Abhijeet
// Kumar(abhijeet19403)
Java
// A Java program for in-place conversion of Binary Tree to
// CDLL
// A binary tree node has - data, left pointer and right
// pointer
class Node {
int data;
Node left, right;
public Node(int data)
{
this.data = data;
left = right = null;
}
}
class BinaryTree {
Node root;
// head --> Pointer to head node of created doubly
// linked list
Node head;
// Initialize previously visited node as NULL. This is
// static so that the same value is accessible in all
// recursive calls
static Node prev = null;
// A simple utility recursive function to convert a
// given Binary tree to Doubly Linked List root --> Root
// of Binary Tree
void BTree2DoublyLinkedList(Node root)
{
// Base case
if (root == null)
return;
// Recursively convert left subtree
BTree2DoublyLinkedList(root.left);
// Now convert this node
if (prev == null)
head = root;
else {
root.left = prev;
prev.right = root;
}
prev = root;
// Finally convert right subtree
BTree2DoublyLinkedList(root.right);
}
// A simple function to convert a given binary tree to
// Circular doubly linked list
// using a utility function
void BTree2CircularDoublyLinkedList(Node root)
{
BTree2DoublyLinkedList(root);
// make the changes to convert a DLL to CDLL
prev.right = head;
head.left = prev;
}
/* Function to print nodes in a given doubly linked list
*/
void printList(Node node)
{
if (node == null)
return;
Node curr = node;
do {
System.out.print(curr.data + " ");
curr = curr.right;
} while (curr != node);
}
// Driver program to test above functions
public static void main(String[] args)
{
// Let us create the tree as shown in above diagram
BinaryTree tree = new BinaryTree();
tree.root = new Node(10);
tree.root.left = new Node(12);
tree.root.right = new Node(15);
tree.root.left.left = new Node(25);
tree.root.left.right = new Node(30);
tree.root.right.left = new Node(36);
// convert to DLL
tree.BTree2CircularDoublyLinkedList(tree.root);
// Print the converted List
tree.printList(tree.head);
}
}
// This code has been contributed by Abhijeet
// Kumar(abhijeet19403)
Python
# A python program for in-place conversion of Binary Tree to DLL
# A binary tree node has data, left pointers and right pointers
class Node:
def __init__(self, val):
self.data = val
self.left = None
self.right = None
# head --> Pointer to head node of created doubly linked list
head = None
# Initialize previously visited node as NULL. This is
# so that the same value is accessible in all recursive
# calls
prev = None
# A simple recursive function to convert a given Binary tree
# to Doubly Linked List
# root --> Root of Binary Tree
def BinaryTree2DoubleLinkedList(root):
# Base case
if (root == None):
return
# Recursively convert left subtree
BinaryTree2DoubleLinkedList(root.left)
# Now convert this node
global prev, head
if (prev == None):
head = root
else:
root.left = prev
prev.right = root
prev = root
# Finally convert right subtree
BinaryTree2DoubleLinkedList(root.right)
# Function to print nodes in a given doubly linked list
def printList(node):
while (node != None):
print(node.data)
node = node.right
# Driver program to test above functions
# Let us create the tree as shown in above diagram
root = Node(10)
root.left = Node(12)
root.right = Node(15)
root.left.left = Node(25)
root.left.right = Node(30)
root.right.left = Node(36)
# convert to DLL
BinaryTree2DoubleLinkedList(root)
# Print the converted List
printList(head)
# This code is contributed by adityamaharshi21.
C#
// A C# program for in-place conversion of Binary Tree to
// CDLL
using System;
public class Node {
public int data;
public Node left, right;
public Node(int data)
{
this.data = data;
left = right = null;
}
}
public class BinaryTree {
Node root;
// head --> Pointer to head node of created doubly
// linked list
Node head;
// Initialize previously visited node as NULL. This is
// static so that the same value is accessible in all
// recursive calls
static Node prev = null;
// A simple utility recursive function to convert a
// given Binary tree to Doubly Linked List root --> Root
// of Binary Tree
void BTree2DoublyLinkedList(Node root)
{
// Base case
if (root == null)
return;
// Recursively convert left subtree
BTree2DoublyLinkedList(root.left);
// Now convert this node
if (prev == null)
head = root;
else {
root.left = prev;
prev.right = root;
}
prev = root;
// Finally convert right subtree
BTree2DoublyLinkedList(root.right);
}
// A simple function to convert a given binary tree to
// Circular doubly linked list
// using a utility function
void BTree2CircularDoublyLinkedList(Node root)
{
BTree2DoublyLinkedList(root);
// make the changes to convert a DLL to CDLL
prev.right = head;
head.left = prev;
}
/* Function to print nodes in a given doubly linked list
*/
void printList(Node node)
{
if (node == null)
return;
Node curr = node;
do {
Console.Write(curr.data + " ");
curr = curr.right;
} while (curr != node);
}
static public void Main()
{
// Let us create the tree as shown in above diagram
BinaryTree tree = new BinaryTree();
tree.root = new Node(10);
tree.root.left = new Node(12);
tree.root.right = new Node(15);
tree.root.left.left = new Node(25);
tree.root.left.right = new Node(30);
tree.root.right.left = new Node(36);
// convert to DLL
tree.BTree2CircularDoublyLinkedList(tree.root);
// Print the converted List
tree.printList(tree.head);
}
}
// This code is contributed by lokesh(lokeshmvs21).
JavaScript
// A javascript program for in-place conversion of Binary Tree to DLL
// A binary tree node has data, left pointers and right pointers
class Node {
constructor(val) {
this.data = val;
this.left = null;
this.right = null;
}
}
var root;
// head --> Pointer to head node of created doubly linked list
var head;
// Initialize previously visited node as NULL. This is
// so that the same value is accessible in all recursive
// calls
var prev = null;
// A simple recursive function to convert a given Binary tree
// to Doubly Linked List
// root --> Root of Binary Tree
function BinaryTree2DoubleLinkedList(root)
{
// Base case
if (root == null)
return;
// Recursively convert left subtree
BinaryTree2DoubleLinkedList(root.left);
// Now convert this node
if (prev == null)
head = root;
else {
root.left = prev;
prev.right = root;
}
prev = root;
// Finally convert right subtree
BinaryTree2DoubleLinkedList(root.right);
}
/* Function to print nodes in a given doubly linked list */
function printList(node) {
while (node != null) {
console.log(node.data + " ");
node = node.right;
}
}
// Driver program to test above functions
// Let us create the tree as shown in above diagram
root = new Node(10);
root.left = new Node(12);
root.right = new Node(15);
root.left.left = new Node(25);
root.left.right = new Node(30);
root.right.left = new Node(36);
// convert to DLL
BinaryTree2DoubleLinkedList(root);
// Print the converted List
printList(head);
// This code is contributed by ishankhandelwals.
Time Complexity: O(N), As every node is visited at most once.
Auxiliary space: O(log N), The extra space is used in the recursive function call stack which can grow upto a maximum size of logN.
This approach was contributed by Abhijeet Kumar
Binary Tree to CDLL | DSA Problem
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem