import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import datasets
import onnx
from onnx_tf.backend import prepare
import tensorflow as tf
import numpy as np
# Step 2: Define the simple CNN model for MNIST
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(64 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = nn.MaxPool2d(kernel_size=2, stride=2)(x)
x = torch.relu(self.conv2(x))
x = nn.MaxPool2d(kernel_size=2, stride=2)(x)
x = x.view(x.size(0), -1) # Flatten the tensor
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# Step 3: Load MNIST dataset
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
# Step 4: Initialize and train the model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SimpleCNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Training the model for 10 epochs
for epoch in range(10): # Train for 10 epochs
model.train()
total_loss = 0
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f'Epoch [{epoch+1}/10], Loss: {total_loss/len(train_loader):.4f}')
# Step 5: Export the model to ONNX format
dummy_input = torch.randn(1, 1, 28, 28).to(device) # Example input
onnx_filename = "mnist_model.onnx"
torch.onnx.export(model, dummy_input, onnx_filename, input_names=['input'], output_names=['output'], opset_version=11)