Count full nodes in a Binary tree (Iterative and Recursive)
Last Updated :
19 Jul, 2022
Given A binary Tree, how do you count all the full nodes (Nodes which have both children as not NULL) without using recursion and with recursion? Note leaves should not be touched as they have both children as NULL.
Nodes 2 and 6 are full nodes has both child's. So count of full nodes in the above tree is 2
Method: Iterative
The idea is to use level-order traversal to solve this problem efficiently.
1) Create an empty Queue Node and push root node to Queue.
2) Do following while nodeQeue is not empty.
a) Pop an item from Queue and process it.
a.1) If it is full node then increment count++.
b) Push left child of popped item to Queue, if available.
c) Push right child of popped item to Queue, if available.
Below is the implementation of this idea.
C++
// C++ program to count
// full nodes in a Binary Tree
#include <bits/stdc++.h>
using namespace std;
// A binary tree Node has data, pointer to left
// child and a pointer to right child
struct Node
{
int data;
struct Node* left, *right;
};
// Function to get the count of full Nodes in
// a binary tree
unsigned int getfullCount(struct Node* node)
{
// If tree is empty
if (!node)
return 0;
queue<Node *> q;
// Do level order traversal starting from root
int count = 0; // Initialize count of full nodes
q.push(node);
while (!q.empty())
{
struct Node *temp = q.front();
q.pop();
if (temp->left && temp->right)
count++;
if (temp->left != NULL)
q.push(temp->left);
if (temp->right != NULL)
q.push(temp->right);
}
return count;
}
/* Helper function that allocates a new Node with the
given data and NULL left and right pointers. */
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Driver program
int main(void)
{
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
struct Node *root = newNode(2);
root->left = newNode(7);
root->right = newNode(5);
root->left->right = newNode(6);
root->left->right->left = newNode(1);
root->left->right->right = newNode(11);
root->right->right = newNode(9);
root->right->right->left = newNode(4);
cout << getfullCount(root);
return 0;
}
Java
// Java program to count
// full nodes in a Binary Tree
// using Iterative approach
import java.util.Queue;
import java.util.LinkedList;
// Class to represent Tree node
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = null;
right = null;
}
}
// Class to count full nodes of Tree
class BinaryTree
{
Node root;
/* Function to get the count of full Nodes in
a binary tree*/
int getfullCount()
{
// If tree is empty
if (root==null)
return 0;
// Initialize empty queue.
Queue<Node> queue = new LinkedList<Node>();
// Do level order traversal starting from root
queue.add(root);
int count=0; // Initialize count of full nodes
while (!queue.isEmpty())
{
Node temp = queue.poll();
if (temp.left!=null && temp.right!=null)
count++;
// Enqueue left child
if (temp.left != null)
{
queue.add(temp.left);
}
// Enqueue right child
if (temp.right != null)
{
queue.add(temp.right);
}
}
return count;
}
public static void main(String args[])
{
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
BinaryTree tree_level = new BinaryTree();
tree_level.root = new Node(2);
tree_level.root.left = new Node(7);
tree_level.root.right = new Node(5);
tree_level.root.left.right = new Node(6);
tree_level.root.left.right.left = new Node(1);
tree_level.root.left.right.right = new Node(11);
tree_level.root.right.right = new Node(9);
tree_level.root.right.right.left = new Node(4);
System.out.println(tree_level.getfullCount());
}
}
Python3
# Python program to count
# full nodes in a Binary Tree
# using iterative approach
# A node structure
class Node:
# A utility function to create a new node
def __init__(self ,key):
self.data = key
self.left = None
self.right = None
# Iterative Method to count full nodes of binary tree
def getfullCount(root):
# Base Case
if root is None:
return 0
# Create an empty queue for level order traversal
queue = []
# Enqueue Root and initialize count
queue.append(root)
count = 0 #initialize count for full nodes
while(len(queue) > 0):
node = queue.pop(0)
# if it is full node then increment count
if node.left is not None and node.right is not None:
count = count+1
# Enqueue left child
if node.left is not None:
queue.append(node.left)
# Enqueue right child
if node.right is not None:
queue.append(node.right)
return count
# Driver Program to test above function
root = Node(2)
root.left = Node(7)
root.right = Node(5)
root.left.right = Node(6)
root.left.right.left = Node(1)
root.left.right.right = Node(11)
root.right.right = Node(9)
root.right.right.left = Node(4)
print(getfullCount(root))
C#
// C# program to count
// full nodes in a Binary Tree
// using Iterative approach
using System;
using System.Collections.Generic;
// Class to represent Tree node
public class Node
{
public int data;
public Node left, right;
public Node(int item)
{
data = item;
left = null;
right = null;
}
}
// Class to count full nodes of Tree
public class BinaryTree
{
Node root;
/* Function to get the count of full Nodes in
a binary tree*/
int getfullCount()
{
// If tree is empty
if (root == null)
return 0;
// Initialize empty queue.
Queue<Node> queue = new Queue<Node>();
// Do level order traversal starting from root
queue.Enqueue(root);
int count = 0; // Initialize count of full nodes
while (queue.Count != 0)
{
Node temp = queue.Dequeue();
if (temp.left != null && temp.right != null)
count++;
// Enqueue left child
if (temp.left != null)
{
queue.Enqueue(temp.left);
}
// Enqueue right child
if (temp.right != null)
{
queue.Enqueue(temp.right);
}
}
return count;
}
// Driver code
public static void Main(String []args)
{
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
BinaryTree tree_level = new BinaryTree();
tree_level.root = new Node(2);
tree_level.root.left = new Node(7);
tree_level.root.right = new Node(5);
tree_level.root.left.right = new Node(6);
tree_level.root.left.right.left = new Node(1);
tree_level.root.left.right.right = new Node(11);
tree_level.root.right.right = new Node(9);
tree_level.root.right.right.left = new Node(4);
Console.WriteLine(tree_level.getfullCount());
}
}
// This code has been contributed by 29AjayKumar
JavaScript
<script>
// Javascript program to count
// full nodes in a Binary Tree
// using Iterative approach
// Class to represent Tree node
class Node
{
constructor(item)
{
this.data = item;
this.left = null;
this.right = null;
}
}
let root;
// Function to get the count of full
// Nodes in a binary tree
function getfullCount()
{
// If tree is empty
if (root == null)
return 0;
// Initialize empty queue.
let queue = [];
// Do level order traversal starting from root
queue.push(root);
// Initialize count of full nodes
let count = 0;
while (queue.length != 0)
{
let temp = queue.shift();
if (temp.left != null && temp.right != null)
count++;
// Enqueue left child
if (temp.left != null)
{
queue.push(temp.left);
}
// Enqueue right child
if (temp.right != null)
{
queue.push(temp.right);
}
}
return count;
}
// Driver code
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
root = new Node(2);
root.left = new Node(7);
root.right = new Node(5);
root.left.right = new Node(6);
root.left.right.left = new Node(1);
root.left.right.right = new Node(11);
root.right.right = new Node(9);
root.right.right.left = new Node(4);
document.write(getfullCount());
// This code is contributed by rag2127
</script>
Output:
2
Time Complexity: O(n)
Auxiliary Space : O(n) where, n is number of nodes in given binary tree
Method: Recursive
The idea is to traverse the tree in postorder. If the current node is full, we increment result by 1 and add returned values of left and right subtrees.
C++
// C++ program to count full nodes in a Binary Tree
#include <bits/stdc++.h>
using namespace std;
// A binary tree Node has data, pointer to left
// child and a pointer to right child
struct Node
{
int data;
struct Node* left, *right;
};
// Function to get the count of full Nodes in
// a binary tree
unsigned int getfullCount(struct Node* root)
{
if (root == NULL)
return 0;
int res = 0;
if (root->left && root->right)
res++;
res += (getfullCount(root->left) +
getfullCount(root->right));
return res;
}
/* Helper function that allocates a new
Node with the given data and NULL left
and right pointers. */
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Driver program
int main(void)
{
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
struct Node *root = newNode(2);
root->left = newNode(7);
root->right = newNode(5);
root->left->right = newNode(6);
root->left->right->left = newNode(1);
root->left->right->right = newNode(11);
root->right->right = newNode(9);
root->right->right->left = newNode(4);
cout << getfullCount(root);
return 0;
}
Java
// Java program to count full nodes in a Binary Tree
import java.util.*;
class GfG {
// A binary tree Node has data, pointer to left
// child and a pointer to right child
static class Node
{
int data;
Node left, right;
}
// Function to get the count of full Nodes in
// a binary tree
static int getfullCount(Node root)
{
if (root == null)
return 0;
int res = 0;
if (root.left != null && root.right != null)
res++;
res += (getfullCount(root.left) + getfullCount(root.right));
return res;
}
/* Helper function that allocates a new
Node with the given data and NULL left
and right pointers. */
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = null;
node.right = null;
return (node);
}
// Driver program
public static void main(String[] args)
{
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
Node root = newNode(2);
root.left = newNode(7);
root.right = newNode(5);
root.left.right = newNode(6);
root.left.right.left = newNode(1);
root.left.right.right = newNode(11);
root.right.right = newNode(9);
root.right.right.left = newNode(4);
System.out.println(getfullCount(root));
}
}
Python3
# Python program to count full
# nodes in a Binary Tree
class newNode():
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Function to get the count of
# full Nodes in a binary tree
def getfullCount(root):
if (root == None):
return 0
res = 0
if (root.left and root.right):
res += 1
res += (getfullCount(root.left) +
getfullCount(root.right))
return res
# Driver code
if __name__ == '__main__':
""" 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
"""
root = newNode(2)
root.left = newNode(7)
root.right = newNode(5)
root.left.right = newNode(6)
root.left.right.left = newNode(1)
root.left.right.right = newNode(11)
root.right.right = newNode(9)
root.right.right.left = newNode(4)
print(getfullCount(root))
# This code is contributed by SHUBHAMSINGH10
C#
// C# program to count full nodes in a Binary Tree
using System;
class GfG
{
// A binary tree Node has data, pointer to left
// child and a pointer to right child
public class Node
{
public int data;
public Node left, right;
}
// Function to get the count of full Nodes in
// a binary tree
static int getfullCount(Node root)
{
if (root == null)
return 0;
int res = 0;
if (root.left != null && root.right != null)
res++;
res += (getfullCount(root.left) + getfullCount(root.right));
return res;
}
/* Helper function that allocates a new
Node with the given data and NULL left
and right pointers. */
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = null;
node.right = null;
return (node);
}
// Driver program
public static void Main()
{
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
Node root = newNode(2);
root.left = newNode(7);
root.right = newNode(5);
root.left.right = newNode(6);
root.left.right.left = newNode(1);
root.left.right.right = newNode(11);
root.right.right = newNode(9);
root.right.right.left = newNode(4);
Console.WriteLine(getfullCount(root));
}
}
/* This code contributed by PrinciRaj1992 */
JavaScript
<script>
// JavaScript program to count full nodes in a Binary Tree
// A binary tree Node has data, pointer to left
// child and a pointer to right child
class Node
{
constructor()
{
this.data = 0;
this.left = null;
this.right = null;
}
}
// Function to get the count of full Nodes in
// a binary tree
function getfullCount(root)
{
if (root == null)
return 0;
var res = 0;
if (root.left != null && root.right != null)
res++;
res += (getfullCount(root.left) + getfullCount(root.right));
return res;
}
/* Helper function that allocates a new
Node with the given data and NULL left
and right pointers. */
function newNode(data)
{
var node = new Node();
node.data = data;
node.left = null;
node.right = null;
return (node);
}
// Driver program
/* 2
/ \
7 5
\ \
6 9
/ \ /
1 11 4
Let us create Binary Tree as shown
*/
var root = newNode(2);
root.left = newNode(7);
root.right = newNode(5);
root.left.right = newNode(6);
root.left.right.left = newNode(1);
root.left.right.right = newNode(11);
root.right.right = newNode(9);
root.right.right.left = newNode(4);
document.write(getfullCount(root));
</script>
Output:
2
Time Complexity: O(n)
Auxiliary Space: O(n)
where, n is number of nodes in given binary tree
Similar Articles:
This article is contributed by Mr. Somesh Awasthi.
Similar Reads
Count half nodes in a Binary tree (Iterative and Recursive)
Given A binary Tree, how do you count all the half nodes (which has only one child) without using recursion? Note leaves should not be touched as they have both children as NULL. Input : Root of below treeOutput : 3 Nodes 7, 5 and 9 are half nodes as one of their child is Null. So count of half node
12 min read
Iterative program to count leaf nodes in a Binary Tree
Given a Binary Tree, the task is to count leaves in it. A node is a leaf node if both left and right child nodes of it are NULL.Example:Input: Output: 3Explanation: Three leaf nodes are 3, 4 and 5 as both of their left and right child is NULL.Input: Output: 3Explanation: Three leaf nodes are 4, 6 an
7 min read
Count balanced nodes present in a binary tree
Given a binary tree, the task is to count the number of balanced nodes in the given tree. Balanced nodes of a binary tree are defined as the nodes which contains both left and right subtrees with their respective sum of node values equal. Examples: Input: 9 / \ 2 4 / \ \ -1 3 0 Output: 1Explanation:
7 min read
Count Non-Leaf nodes in a Binary Tree
Given a Binary tree, count the total number of non-leaf nodes in the tree Examples: Input : Output :2 Explanation In the above tree only two nodes 1 and 2 are non-leaf nodesRecommended PracticeCount Non-Leaf Nodes in TreeTry It! We recursively traverse the given tree. While traversing, we count non-
10 min read
Construct a Binary Tree in Level Order using Recursion
Given an array of integers, the task is to construct a binary tree in level order fashion using Recursion. Examples Given an array arr[] = {15, 10, 20, 8, 12, 16, 25} Approach: Idea is to keep track of the number of child nodes in the left sub-tree and right sub-tree and then take the decision on th
10 min read
Program to count leaf nodes in a binary tree
Given a Binary Tree, the task is to count leaves in it. A node is a leaf node if both left and right child nodes of it are NULL. Example:Input: Output: 3Explanation: Three leaf nodes are 3, 4 and 5 as both of their left and right child is NULL.Input: Output: 3Explanation: Three leaf nodes are 4, 6 a
7 min read
Print all nodes in a binary tree having K leaves
Given a binary tree and a integer value K, the task is to find all nodes in given binary tree having K leaves in subtree rooted with them. Examples : // For above binary tree Input : k = 2 Output: {3} // here node 3 have k = 2 leaves Input : k = 1 Output: {6} // here node 6 have k = 1 leaveRecommend
7 min read
Get level of a node in binary tree | iterative approach
Given a Binary Tree and a key, write a function that returns level of the key. For example, consider the following tree. If the input key is 3, then your function should return 1. If the input key is 4, then your function should return 3. And for key which is not present in key, then your function s
10 min read
Check whether a binary tree is a full binary tree or not | Iterative Approach
Given a binary tree containing n nodes. The problem is to check whether the given binary tree is a full binary tree or not. A full binary tree is defined as a binary tree in which all nodes have either zero or two child nodes. Conversely, there is no node in a full binary tree, which has only one ch
8 min read
Find maximum count of duplicate nodes in a Binary Search Tree
Given a Binary Search Tree (BST) with duplicates, find the node (the most frequently occurred element) in the given BST. If the BST contains two or more such nodes, print any of them. Note: We cannot use any extra space. (Assume that the implicit stack space incurred due to recursion does not count)
9 min read