Count number of common elements between a sorted array and a reverse sorted array
Last Updated :
22 Mar, 2023
Given two arrays consisting of N distinct integers such that the array A[] and B[] are sorted in ascending and descending order respectively, the task is to find the number of values common in both arrays.
Examples:
Input: A[] = {1, 10, 100}, B[] = {200, 20, 2}
Output: 0
Input: A[] = {2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999}, B[] = {109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1}
Output: 4
Naive Approach:- Check for all elements in array A that is present in array B or not if Yes increase the count of pair.
Implementation:-
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to count the number of
// elements common in both the arrays
int countEqual(int A[], int B[], int N)
{
//variable to store answer
int ans=0;
//first loop for array A
for(int i=0;i<N;i++)
{
//This loop to find array A element in B
for(int j=0;j<N;j++)
{
//if found then increase count and exit the loop
if(A[i]==B[j])
{
ans++;
break;
}
}
}
return ans;
}
// Driver Code
int main()
{
int A[] = { 2, 4, 5, 8, 12, 13, 17,
18, 20, 22, 309, 999 };
int B[] = { 109, 99, 68, 54, 22, 19,
17, 13, 11, 5, 3, 1 };
int N = sizeof(A) / sizeof(int);
cout << countEqual(A, B, N);
return 0;
}
//This code contributed by shubhamrajput6156
Java
import java.io.*;
class GFG
{
// Java program for the above approach
// Function to count the number of
// elements common in both the arrays
public static int countEqual(int[] A, int[] B, int N)
{
// variable to store answer
int ans = 0;
// first loop for array A
for (int i = 0;i < N;i++)
{
// This loop to find array A element in B
for (int j = 0;j < N;j++)
{
// if found then increase count and exit the loop
if (A[i] == B[j])
{
ans++;
break;
}
}
}
return ans;
}
// Driver Code
public static void main(String[] args)
{
int[] A = {2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999};
int[] B = {109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1};
int N = A.length;
System.out.print(countEqual(A, B, N));
}
}
// This code contributed by bhardwajji
JavaScript
// JS code to implement the approach
// JavaScript code for the above approach
function countEqual(A, B, N)
{
// variable to store answer
let ans = 0;
// first loop for array A
for (let i = 0; i < N; i++)
{
// This loop to find array A element in B
for (let j = 0; j < N; j++)
{
// if found then increase count and exit the
// loop
if (A[i] == B[j]) {
ans++;
break;
}
}
}
return ans;
}
// Driver Code
let A = [ 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 ];
let B = [ 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 ];
let N = A.length;
console.log(countEqual(A, B, N));
// This code is contributed by phasing17
C#
// C# program for the above approach
using System;
class GFG
{
// Function to count the number of
// elements common in both the arrays
public static int countEqual(int[] A, int[] B, int N)
{
// variable to store answer
int ans = 0;
// first loop for array A
for (int i = 0;i < N;i++)
{
// This loop to find array A element in B
for (int j = 0;j < N;j++)
{
// if found then increase count and exit the loop
if (A[i] == B[j])
{
ans++;
break;
}
}
}
return ans;
}
// Driver Code
public static void Main()
{
int[] A = {2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999};
int[] B = {109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1};
int N = A.Length;
Console.WriteLine(countEqual(A, B, N));
}
}
// This code is contributed by Pushpesh Raj.
Python3
# python program for the above approach
# Function to count the number of
# elements common in both the arrays
def countEqual(A, B, N):
# variable to store answer
ans = 0
# first loop for array A
for i in range(N):
# This loop to find array A element in B
for j in range(N):
# if found then increase count and exit the loop
if A[i] == B[j]:
ans += 1
break
return ans
# driver code
A = [2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999]
B = [109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1]
N = len(A)
print(countEqual(A, B, N))
Time Complexity:- O(N^2)
Auxiliary Space:- O(1)
Approach: The given problem can be solved by using the Two Pointer Approach. Follow the steps below to solve the problem:
- Initialize two variables, say first as 0 and second as (N - 1) that is used to traverse the array A[] and B[] from the front and back respectively.
- Initialize a variable, say count as 0 that stores the count of numbers common in the array A[] and B[].
- Iterate a loop until first < N and second >= 0 and perform the following steps:
- If the value of A[first] is equal to B[second], then increment the values of count and first and decrement the value of the second.
- If the value of A[first] is less than B[second], then increment the value of first.
- If the value of A[first] is greater than B[second], then decrement the value of the second.
- After completing the above steps, print the value of count as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to count the number of
// elements common in both the arrays
int countEqual(int A[], int B[], int N)
{
// Used to traverse array A[] and
// B[] from the front and the back
int first = 0;
int second = N - 1;
// Stores the count of numbers
// common in both array
int count = 0;
while (first < N && second >= 0) {
// If A[first] is less than
// B[second]
if (A[first] < B[second]) {
// Increment the value
// of first
first++;
}
// IF B[second] is less
// than A[first]
else if (B[second] < A[first]) {
// Decrement the value
// of second
second--;
}
// A[first] is equal to
// B[second]
else {
// Increment the value
// of count
count++;
// Increment the value
// of first
first++;
// Decrement the value
// of second
second--;
}
}
// Return the value of count
return count;
}
// Driver Code
int main()
{
int A[] = { 2, 4, 5, 8, 12, 13, 17,
18, 20, 22, 309, 999 };
int B[] = { 109, 99, 68, 54, 22, 19,
17, 13, 11, 5, 3, 1 };
int N = sizeof(A) / sizeof(int);
cout << countEqual(A, B, N);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
class GFG
{
// Function to count the number of
// elements common in both the arrays
static int countEqual(int A[], int B[], int N)
{
// Used to traverse array A[] and
// B[] from the front and the back
int first = 0;
int second = N - 1;
// Stores the count of numbers
// common in both array
int count = 0;
while (first < N && second >= 0) {
// If A[first] is less than
// B[second]
if (A[first] < B[second]) {
// Increment the value
// of first
first++;
}
// IF B[second] is less
// than A[first]
else if (B[second] < A[first]) {
// Decrement the value
// of second
second--;
}
// A[first] is equal to
// B[second]
else {
// Increment the value
// of count
count++;
// Increment the value
// of first
first++;
// Decrement the value
// of second
second--;
}
}
// Return the value of count
return count;
}
// Driver Code
public static void main(String[] args)
{
int A[] = { 2, 4, 5, 8, 12, 13, 17,
18, 20, 22, 309, 999 };
int B[] = { 109, 99, 68, 54, 22, 19,
17, 13, 11, 5, 3, 1 };
int N = A.length;
System.out.println(countEqual(A, B, N));
}
}
// This code is contributed by susmitakundugoaldanga.
Python3
# Python program for the above approach
# Function to count the number of
# elements common in both the arrays
def countEqual(A, B, N) :
# Used to traverse array A[] and
# B[] from the front and the back
first = 0
second = N - 1
# Stores the count of numbers
# common in both array
count = 0
while (first < N and second >= 0) :
# If A[first] is less than
# B[second]
if (A[first] < B[second]) :
# Increment the value
# of first
first += 1
# IF B[second] is less
# than A[first]
elif (B[second] < A[first]) :
# Decrement the value
# of second
second -= 1
# A[first] is equal to
# B[second]
else :
# Increment the value
# of count
count += 1
# Increment the value
# of first
first += 1
# Decrement the value
# of second
second -= 1
# Return the value of count
return count
# Driver Code
A= [ 2, 4, 5, 8, 12, 13, 17,
18, 20, 22, 309, 999 ]
B = [ 109, 99, 68, 54, 22, 19,
17, 13, 11, 5, 3, 1 ]
N = len(A)
print(countEqual(A, B, N))
# This code is contributed by sanjou_62.
C#
// C# program for the above approach
using System;
class GFG{
// Function to count the number of
// elements common in both the arrays
static int countEqual(int[] A, int[] B, int N)
{
// Used to traverse array A[] and
// B[] from the front and the back
int first = 0;
int second = N - 1;
// Stores the count of numbers
// common in both array
int count = 0;
while (first < N && second >= 0)
{
// If A[first] is less than
// B[second]
if (A[first] < B[second])
{
// Increment the value
// of first
first++;
}
// IF B[second] is less
// than A[first]
else if (B[second] < A[first])
{
// Decrement the value
// of second
second--;
}
// A[first] is equal to
// B[second]
else
{
// Increment the value
// of count
count++;
// Increment the value
// of first
first++;
// Decrement the value
// of second
second--;
}
}
// Return the value of count
return count;
}
// Driver code
static void Main()
{
int[] A = { 2, 4, 5, 8, 12, 13,
17, 18, 20, 22, 309, 999 };
int[] B = { 109, 99, 68, 54, 22, 19,
17, 13, 11, 5, 3, 1 };
int N = A.Length;
Console.WriteLine(countEqual(A, B, N));
}
}
// This code is contributed by abhinavjain194
JavaScript
<script>
// Javascript program for the above approach
// Function to count the number of
// elements common in both the arrays
function countEqual(A, B, N)
{
// Used to traverse array A[] and
// B[] from the front and the back
let first = 0;
let second = N - 1;
// Stores the count of numbers
// common in both array
let count = 0;
while (first < N && second >= 0) {
// If A[first] is less than
// B[second]
if (A[first] < B[second]) {
// Increment the value
// of first
first++;
}
// IF B[second] is less
// than A[first]
else if (B[second] < A[first]) {
// Decrement the value
// of second
second--;
}
// A[first] is equal to
// B[second]
else {
// Increment the value
// of count
count++;
// Increment the value
// of first
first++;
// Decrement the value
// of second
second--;
}
}
// Return the value of count
return count;
}
// Driver Code
let A = [2, 4, 5, 8, 12, 13, 17,
18, 20, 22, 309, 999];
let B = [109, 99, 68, 54, 22, 19,
17, 13, 11, 5, 3, 1];
let N = A.length;
document.write(countEqual(A, B, N));
// This code is contributed _saurabh_jaiswal
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Another Approach : We will use Binary search to check if the element of array B[] is present in the array A[] or not because array A[] is already sorted in increasing order. So , we can use binary search for finding elements.
Below is the implementation of the above approach :
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
//Function to check if x is present in the array or not
bool binarysearch(int arr[], int N, int x)
{
int l = 0, r = N - 1;
while (l <= r) {
int mid = (l + r) / 2;
// Checking if the middle element is equal to x
if (arr[mid] == x) {
return true;
}
else if (arr[mid] < x) {
l = mid + 1;
}
else {
r = mid - 1;
}
}
// return true , if element x is present in the array
// else false
return false;
}
// Function to count the number of
// elements common in both the arrays
int countEqual(int A[], int B[], int N, int M)
{ int count = 0;
// Iterate each element of array B
for (int i = 0; i < M; i++)
{
// Checking if the element of array B is present in
// array A using the binary search
if (binarysearch(A, N, B[i]))
{
count++;
}
}
// Return count of common element
return count;
}
// Driver Code
int main()
{
int A[] = { 2, 4, 5, 8, 12, 13, 17,
18, 20, 22, 309, 999 };
int B[] = { 109, 99, 68, 54, 22
, 19,17, 13, 11, 5, 3, 1 };
int N = sizeof(A) / sizeof(int);
int M = sizeof(B) / sizeof(int);
//Function call
cout << countEqual(A, B, N, M)<<endl;
return 0;
}
// This code is contributed by nikhilsainiofficial546
Java
// Java program for the above approach
import java.util.Arrays;
class Main {
// Function to check if x is present in the array or not
static boolean binarySearch(int[] arr, int N, int x) {
int l = 0, r = N - 1;
while (l <= r) {
int mid = (l + r) / 2;
// Checking if the middle element is equal to x
if (arr[mid] == x) {
return true;
} else if (arr[mid] < x) {
l = mid + 1;
} else {
r = mid - 1;
}
}
// return true , if element x is present in the array
// else false
return false;
}
// Function to count the number of elements common in both the arrays
static int countEqual(int[] A, int[] B, int N, int M) {
int count = 0;
// Sort array A
Arrays.sort(A);
// Iterate each element of array B
for (int i = 0; i < M; i++) {
// Checking if the element of array B is present in array A using the binary search
if (binarySearch(A, N, B[i])) {
count++;
}
}
// Return count of common element
return count;
}
// Driver Code
public static void main(String[] args) {
int[] A = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 };
int[] B = { 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 };
int N = A.length;
int M = B.length;
//Function call
System.out.println(countEqual(A, B, N, M));
}
}
Python3
#Python program for the above approach
# Function to check if x is present in the array or not
def binarySearch(arr, N, x):
l = 0
r = N - 1
while l <= r:
mid = (l + r) // 2
# Checking if the middle element is equal to x
if arr[mid] == x:
return True
elif arr[mid] < x:
l = mid + 1
else:
r = mid - 1
# return true , if element x is present in the array
# else false
return False
# Function to count the number of elements common in both the arrays
def countEqual(A, B, N, M):
count = 0
# Sort array A
A.sort()
# Iterate each element of array B
for i in range(M):
# Checking if the element of array B is present in array A using the binary search
if binarySearch(A, N, B[i]):
count += 1
# Return count of common element
return count
# Driver Code
A = [ 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 ]
B = [ 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 ]
N = len(A)
M = len(B)
#Function call
print(countEqual(A, B, N, M))
C#
// C# program for the above approach
using System;
class Program
{
// Function to check if x is present in the array or not
static bool BinarySearch(int[] arr, int N, int x)
{
int l = 0, r = N - 1;
while (l <= r) {
int mid = (l + r) / 2;
// Checking if the middle element is equal to x
if (arr[mid] == x) {
return true;
}
else if (arr[mid] < x) {
l = mid + 1;
}
else {
r = mid - 1;
}
}
// return true , if element x is present in the
// array else false
return false;
}
// Function to count the number of
// elements common in both the arrays
static int CountEqual(int[] A, int[] B, int N, int M)
{
int count = 0;
// Iterate each element of array B
for (int i = 0; i < M; i++) {
// Checking if the element of array B is present
// in array A using the binary search
if (BinarySearch(A, N, B[i])) {
count++;
}
}
// Return count of common element
return count;
}
// Driver Code
static void Main()
{
int[] A = { 2, 4, 5, 8, 12, 13,
17, 18, 20, 22, 309, 999 };
int[] B = { 109, 99, 68, 54, 22, 19,
17, 13, 11, 5, 3, 1 };
int N = A.Length;
int M = B.Length;
// Function call
Console.WriteLine(CountEqual(A, B, N, M));
Console.ReadLine();
}
}
JavaScript
// JavaScript program to implement the approach
// Function to check if x is present in the array or not
function binarysearch(arr, N, x) {
let l = 0, r = N - 1;
while (l <= r) {
let mid = Math.floor((l + r) / 2);
// Checking if the middle element is equal to x
if (arr[mid] === x) {
return true;
}
else if (arr[mid] < x) {
l = mid + 1;
}
else {
r = mid - 1;
}
}
// return true , if element x is present in the array
// else false
return false;
}
// Function to count the number of
// elements common in both the arrays
function countEqual(A, B, N, M) {
let count = 0;
// Iterate each element of array B
for (let i = 0; i < M; i++) {
// Checking if the element of array B is present in
// array A using the binary search
if (binarysearch(A, N, B[i])) {
count++;
}
}
// Return count of common element
return count;
}
// Driver Code
(() => {
const A = [2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999];
const B = [109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1];
const N = A.length;
const M = B.length;
// Function call
console.log(countEqual(A, B, N, M));
})();
// This code is contributed by phasing17
Time Complexity: O(M*log(N))
Auxiliary Space: O(1)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
SQL Commands | DDL, DQL, DML, DCL and TCL Commands SQL commands are crucial for managing databases effectively. These commands are divided into categories such as Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), Data Query Language (DQL), and Transaction Control Language (TCL). In this article, we will e
7 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read