Count of distinct index pair (i, j) such that element sum of First Array is greater
Last Updated :
26 Oct, 2021
Given two arrays a[] and b[], both of size N. The task is to count the number of distinct pairs such that (a[i] + a[j] ) > ( b[i] + b[j] ) subject to condition that (j > i).
Examples:
Input: N = 5, a[] = {1, 2, 3, 4, 5}, b[] = {2, 5, 6, 1, 9}
Output: 1
Explanation:
Only one such pair exists and that is (0, 3).
a[0] = 1, a[3] = 4 and a[0] + a[3] = 1 + 4 = 5.
b[0] = 2, b[3] = 1 and b[0] + b[3] = 2 + 1 = 3.
Clearly, 5 > 3 and j > i. Thus (0, 3) is a possible pair.
Input: N = 5, a[] = {2, 4, 2, 7, 8}, b[] = {1, 3, 6, 4, 5}
Output: 6
Naive Approach:
The simplest way is to iterate through every possible pair and if it satisfies the condition, then increment the count. Then, return the count as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above problem
#include <bits/stdc++.h>
using namespace std;
// function to find the number of
// pairs satisfying the given cond.
int count_pairs(int a[],
int b[], int N)
{
// variables used for traversal
int i, j;
// count variable to store the
// count of possible pairs
int count = 0;
// Nested loop to find out the
// possible pairs
for (i = 0; i < (N - 1); i++) {
for (j = (i + 1); j < N; j++) {
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j])
> (b[i] + b[j])) {
count++;
}
}
}
// Return the count value
return count;
}
// Driver Code
int main()
{
// Size of the arrays
int N = 5;
// Initialise the arrays
int a[N] = { 1, 2, 3, 4, 5 };
int b[N] = { 2, 5, 6, 1, 9 };
// function call that returns
// the count of possible pairs
cout << count_pairs(a, b, N)
<< endl;
return 0;
}
Java
// Java program for the above problem
class GFG{
// function to find the number of
// pairs satisfying the given cond.
static int count_pairs(int []a,
int b[], int N)
{
// variables used for traversal
int i, j;
// count variable to store the
// count of possible pairs
int count = 0;
// Nested loop to find out the
// possible pairs
for (i = 0; i < (N - 1); i++)
{
for (j = (i + 1); j < N; j++)
{
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j]) > (b[i] + b[j]))
{
count++;
}
}
}
// Return the count value
return count;
}
// Driver Code
public static void main(String[] args)
{
// Size of the arrays
int N = 5;
// Initialise the arrays
int a[] = new int[]{ 1, 2, 3, 4, 5 };
int b[] = new int[]{ 2, 5, 6, 1, 9 };
// function call that returns
// the count of possible pairs
System.out.println(count_pairs(a, b, N));
}
}
// This code is contributed by rock_cool
Python3
# Python3 program for the above problem
# function to find the number of
# pairs satisfying the given cond.
def count_pairs(a, b, N):
# count variable to store the
# count of possible pairs
count = 0;
# Nested loop to find out the
# possible pairs
for i in range(0, N - 1):
for j in range(i + 1, N):
# Check if the given
# condition is satisfied
# or not. If yes then
# increment the count.
if ((a[i] + a[j]) > (b[i] + b[j])):
count += 1;
# Return the count value
return count;
# Driver Code
# Size of the arrays
N = 5;
# Initialise the arrays
a = [ 1, 2, 3, 4, 5 ];
b = [ 2, 5, 6, 1, 9 ];
# function call that returns
# the count of possible pairs
print(count_pairs(a, b, N)
# This code is contributed by Code_Mech
C#
// C# program for the above problem
using System;
class GFG{
// function to find the number of
// pairs satisfying the given cond.
static int count_pairs(int []a,
int []b, int N)
{
// variables used for traversal
int i, j;
// count variable to store the
// count of possible pairs
int count = 0;
// Nested loop to find out the
// possible pairs
for (i = 0; i < (N - 1); i++)
{
for (j = (i + 1); j < N; j++)
{
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j]) > (b[i] + b[j]))
{
count++;
}
}
}
// Return the count value
return count;
}
// Driver Code
public static void Main()
{
// Size of the arrays
int N = 5;
// Initialise the arrays
int []a = new int[]{ 1, 2, 3, 4, 5 };
int []b = new int[]{ 2, 5, 6, 1, 9 };
// function call that returns
// the count of possible pairs
Console.Write(count_pairs(a, b, N));
}
}
// This code is contributed by Code_Mech
JavaScript
<script>
// Javascript program for the above problem
// function to find the number of
// pairs satisfying the given cond.
function count_pairs(a, b, N)
{
// Variables used for traversal
let i, j;
// count variable to store the
// count of possible pairs
let count = 0;
// Nested loop to find out the
// possible pairs
for(i = 0; i < (N - 1); i++)
{
for(j = (i + 1); j < N; j++)
{
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j]) >
(b[i] + b[j]))
{
count++;
}
}
}
// Return the count value
return count;
}
// Driver code
// Size of the arrays
let N = 5;
// Initialise the arrays
let a = [ 1, 2, 3, 4, 5 ];
let b = [ 2, 5, 6, 1, 9 ];
// Function call that returns
// the count of possible pairs
document.write(count_pairs(a, b, N));
// This code is contributed by divyesh072019
</script>
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach:
Follow the steps below to solve the problem:
- Re-arrange the given inequality as:
=> a[i] + a[j] > b[i] + b[j]
=> a[i] - b[i] + a[j] - b[j] > 0
- Initialize another array c[ ] of size N that stores the values of a[i] - b[i].
- Sort the array c[ ].
- Initialise an answer variable to 0. Iterate over the array c[ ].
- For every index i in the array c[ ] do the following operations:
- If c[i] <= 0, simply continue.
- If c[i] > 0, calculate the minimum index position and store the value in a variable pos such that c[pos] + c[i] > 0. The value of pos can be easily found using lower_bound function in C++ STL.
- Add (i - pos) to the answer.
Illustration:
- N = 5, a[] = {1, 2, 3, 4, 5}, b[] = {2, 5, 6, 1, 9}
- The array c[] for this example will be c[] = {-1, -3, -3, 3, -4}
- After sorting, array c[] = {-4, -3, -3, -1, 3}
- The first and only positive value of array c[] is found at index 4.
- pos = lower_bound(-c[4] + 1) = lower_bound(-2) = 3.
- Count of possible pairs = i - pos = 4 - 3 = 1.
Note: Had there been more than one positive number found in the array c[], then find out the pos for each and every positive value in c[] and add the value of i - pos to the count.
Below is the implementation of the above approach:
C++
// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the number
// of pairs.
int numberOfPairs(int* a,
int* b, int n)
{
// Array c[] where
// c[i] = a[i] - b[i]
int c[n];
for (int i = 0; i < n; i++) {
c[i] = a[i] - b[i];
}
// Sort the array c
sort(c, c + n);
// Initialise answer as 0
int answer = 0;
// Iterate from index
// 0 to n - 1
for (int i = 1; i < n; i++) {
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Find the minimum index
// such that c[i] + c[j] > 0
// which is equivalent to
// c[j] >= - c[i] + 1
int pos = lower_bound(c, c + n,
-c[i] + 1)
- c;
// Add ( i - pos) to answer
answer += (i - pos);
}
// return the answer
return answer;
}
// Driver code
int32_t main()
{
// Number of elements
// in a and b
int n = 5;
// array a
int a[] = { 1, 2, 3, 4, 5 };
// array b
int b[] = { 2, 5, 6, 1, 9 };
cout << numberOfPairs(a, b, n)
<< endl;
return 0;
}
Java
// Java program of the above approach
import java.util.*;
class GFG{
// Function to find the number
// of pairs.
static int numberOfPairs(int[] a,
int[] b, int n)
{
// Array c[] where
// c[i] = a[i] - b[i]
int c[] = new int[n];
for(int i = 0; i < n; i++)
{
c[i] = a[i] - b[i];
}
// Sort the array c
Arrays.sort(c);
// Initialise answer as 0
int answer = 0;
// Iterate from index
// 0 to n - 1
for(int i = 1; i < n; i++)
{
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Which is equivalent to
// c[j] >= - c[i] + 1
int pos = -1;
for(int j = 0; j < n; j++)
{
if (c[i] + c[j] > 0)
{
pos = j;
break;
}
}
// Add (i - pos) to answer
answer += (i - pos);
}
// Return the answer
return answer;
}
// Driver code
public static void main (String[] args)
{
// Number of elements
// in a and b
int n = 5;
// array a
int a[] = { 1, 2, 3, 4, 5 };
// array b
int b[] = { 2, 5, 6, 1, 9 };
System.out.println(numberOfPairs(a, b, n));
}
}
// This code is contributed by offbeat
Python3
# Python3 program of the above approach
from bisect import bisect_left
# Function to find the number
# of pairs.
def numberOfPairs(a, b, n):
# Array c[] where
# c[i] = a[i] - b[i]
c = [0 for i in range(n)]
for i in range(n):
c[i] = a[i] - b[i]
# Sort the array c
c = sorted(c)
# Initialise answer as 0
answer = 0
# Iterate from index
# 0 to n - 1
for i in range(1, n):
# If c[i] <= 0 then in the
# sorted array c[i] + c[pos]
# can never greater than 0
# where pos < i
if (c[i] <= 0):
continue
# Find the minimum index
# such that c[i] + c[j] > 0
# which is equivalent to
# c[j] >= - c[i] + 1
pos = bisect_left(c, -c[i] + 1)
# Add ( i - pos) to answer
answer += (i - pos)
# Return the answer
return answer
# Driver code
if __name__ == '__main__':
# Number of elements
# in a and b
n = 5
# Array a
a = [ 1, 2, 3, 4, 5 ]
# Array b
b = [ 2, 5, 6, 1, 9 ]
print(numberOfPairs(a, b, n))
# This code is contributed by mohit kumar 29
C#
// C# program of the above approach
using System;
class GFG{
// Function to find the number
// of pairs.
static int numberOfPairs(int[] a,
int[] b, int n)
{
// Array c[] where
// c[i] = a[i] - b[i]
int[] c = new int[n];
for(int i = 0; i < n; i++)
{
c[i] = a[i] - b[i];
}
// Sort the array c
Array.Sort(c);
// Initialise answer as 0
int answer = 0;
// Iterate from index
// 0 to n - 1
for(int i = 1; i < n; i++)
{
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Which is equivalent to
// c[j] >= - c[i] + 1
int pos = -1;
for(int j = 0; j < n; j++)
{
if (c[i] + c[j] > 0)
{
pos = j;
break;
}
}
// Add (i - pos) to answer
answer += (i - pos);
}
// Return the answer
return answer;
}
// Driver Code
static void Main()
{
// Number of elements
// in a and b
int n = 5;
// Array a
int[] a = { 1, 2, 3, 4, 5 };
// Array b
int[] b = { 2, 5, 6, 1, 9 };
Console.WriteLine(numberOfPairs(a, b, n));
}
}
// This code is contributed by divyeshrabadiya07
JavaScript
<script>
// Javascript program of the above approach
// Function to find the number of pairs.
function numberOfPairs(a, b, n)
{
// Array c[] where
// c[i] = a[i] - b[i]
let c = new Array(n);
for(let i = 0; i < n; i++)
{
c[i] = a[i] - b[i];
}
// Sort the array c
c.sort(function(a, b){return a - b});
// Initialise answer as 0
let answer = 0;
// Iterate from index
// 0 to n - 1
for(let i = 1; i < n; i++)
{
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Which is equivalent to
// c[j] >= - c[i] + 1
let pos = -1;
for(let j = 0; j < n; j++)
{
if (c[i] + c[j] > 0)
{
pos = j;
break;
}
}
// Add (i - pos) to answer
answer += (i - pos);
}
// Return the answer
return answer;
}
// Number of elements
// in a and b
let n = 5;
// Array a
let a = [ 1, 2, 3, 4, 5 ];
// Array b
let b = [ 2, 5, 6, 1, 9 ];
document.write(numberOfPairs(a, b, n));
</script>
Time Complexity: O( N * log(N) ), where N is the number of elements in array.
Auxiliary Space: O(N)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read