Count pairs having bitwise XOR greater than K from a given array
Last Updated :
23 Jul, 2025
Given an array arr[]of size N and an integer K, the task is to count the number of pairs from the given array such that the Bitwise XOR of each pair is greater than K.
Examples:
Input: arr = {1, 2, 3, 5} , K = 2
Output: 4
Explanation:
Bitwise XOR of all possible pairs that satisfy the given conditions are:
arr[0] ^ arr[1] = 1 ^ 2 = 3
arr[0] ^ arr[3] = 1 ^ 5 = 4
arr[1] ^ arr[3] = 2 ^ 5 = 7
arr[0] ^ arr[3] = 3 ^ 5 = 6
Therefore, the required output is 4.
Input: arr[] = {3, 5, 6,8}, K = 2
Output: 6
Naive Approach: The simplest approach to solve this problem is to traverse the given array and generate all possible pairs of the given array and for each pair, check if bitwise XOR of the pair is greater than K or not. If found to be true, then increment the count of pairs having bitwise XOR greater than K. Finally, print the count of such pairs obtained.
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to Count pairs having
// bitwise XOR greater than K
// from a given array
int cntGreaterPairs(int arr[], int n, int k)
{
// Variable initialise to store the count
int count=0;
// Traverse in the array and
// generate all possible pairs
// of the given array
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
// For every pair, check if bitwise
// XOR of the pair is greater than
// K or not
if(arr[i]^arr[j]>k)
count++;
}
}
// return the count
return count;
}
//Driver code
int main()
{
int arr[] = {3, 5, 6, 8};
int K= 2;
int N = sizeof(arr) / sizeof(arr[0]);
cout<<cntGreaterPairs(arr, N, K);
}
// This code is contributed by Utkarsh Kumar.
Java
// Java program to implement
// the above approach
import java.util.*;
class Main {
// Function to Count pairs having
// bitwise XOR greater than K
// from a given array
static int cntGreaterPairs(int arr[], int n, int k)
{
// Variable initialise to store the count
int count = 0;
// Traverse in the array and
// generate all possible pairs
// of the given array
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// For every pair, check if bitwise
// XOR of the pair is greater than
// K or not
if ((arr[i] ^ arr[j]) > k)
count++;
}
}
// return the count
return count;
}
// Driver code
public static void main(String args[])
{
int arr[] = { 3, 5, 6, 8 };
int K = 2;
int N = arr.length;
System.out.print(cntGreaterPairs(arr, N, K));
}
}
Python3
# Function to count pairs having bitwise XOR greater than K from a given array
def cntGreaterPairs(arr, n, k):
# Variable initialise to store the count
count = 0
# Traverse in the array and
# generate all possible pairs
# of the given array
for i in range(n):
for j in range(i+1, n):
# For every pair, check if bitwise
# XOR of the pair is greater than
# K or not
if arr[i]^arr[j] > k:
count += 1
# Return the count
return count
# Driver code
arr = [3, 5, 6, 8]
K = 2
N = len(arr)
print(cntGreaterPairs(arr, N, K))
JavaScript
// Function to count pairs having bitwise XOR greater than K from a given array
function cntGreaterPairs(arr, n, k) {
// Variable initialise to store the count
let count = 0;
// Traverse in the array and
// generate all possible pairs
// of the given array
for (let i = 0; i < n; i++) {
for (let j = i+1; j < n; j++) {
// For every pair, check if bitwise
// XOR of the pair is greater than
// K or not
if ((arr[i]^arr[j]) > k) {
count++;
}
}
}
// Return the count
return count;
}
// Driver code
const arr = [3, 5, 6, 8];
const K = 2;
const N = arr.length;
console.log(cntGreaterPairs(arr, N, K));
C#
using System;
public class Program
{
// Function to Count pairs having
// bitwise XOR greater than K
// from a given array
public static int cntGreaterPairs(int[] arr, int n, int k)
{
// Variable initialise to store the count
int count = 0;
// Traverse in the array and
// generate all possible pairs
// of the given array
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
// For every pair, check if bitwise
// XOR of the pair is greater than
// K or not
if ((arr[i] ^ arr[j]) > k)
count++;
}
}
// return the count
return count;
}
//Driver code
public static void Main()
{
int[] arr = { 3, 5, 6, 8 };
int K = 2;
int N = arr.Length;
Console.WriteLine(cntGreaterPairs(arr, N, K));
}
}
Time Complexity:O(N2)
Auxiliary Space:O(1)
Efficient Approach: The problem can be solved using Trie. The idea is to iterate over the given array and for each array element, count the number of elements present in the Trie whose bitwise XOR with the current element is greater than K and insert the binary representation of the current element into the Trie. Finally, print the count of pairs having bitwise XOR greater than K. Follow the steps below to solve the problem:
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Structure of Trie
struct TrieNode
{
// Stores binary representation
// of numbers
TrieNode *child[2];
// Stores count of elements
// present in a node
int cnt;
// Function to initialize
// a Trie Node
TrieNode() {
child[0] = child[1] = NULL;
cnt = 0;
}
};
// Function to insert a number into Trie
void insertTrie(TrieNode *root, int N) {
// Traverse binary representation of X.
for (int i = 31; i >= 0; i--) {
// Stores ith bit of N
bool x = (N) & (1 << i);
// Check if an element already
// present in Trie having ith bit x.
if(!root->child[x]) {
// Create a new node of Trie.
root->child[x] = new TrieNode();
}
// Update count of elements
// whose ith bit is x
root->child[x]->cnt+= 1;
// Update root.
root= root->child[x];
}
}
// Function to count elements
// in Trie whose XOR with N
// exceeds K
int cntGreater(TrieNode * root,
int N, int K)
{
// Stores count of elements
// whose XOR with N exceeding K
int cntPairs = 0;
// Traverse binary representation
// of N and K in Trie
for (int i = 31; i >= 0 &&
root; i--) {
// Stores ith bit of N
bool x = N & (1 << i);
// Stores ith bit of K
bool y = K & (1 << i);
// If the ith bit of K is 1
if (y) {
// Update root.
root =
root->child[1 - x];
}
// If the ith bit of K is 0
else{
// If an element already
// present in Trie having
// ith bit (1 - x)
if (root->child[1 - x]) {
// Update cntPairs
cntPairs +=
root->child[1 - x]->cnt;
}
// Update root.
root = root->child[x];
}
}
return cntPairs;
}
// Function to count pairs that
// satisfy the given conditions.
int cntGreaterPairs(int arr[], int N,
int K) {
// Create root node of Trie
TrieNode *root = new TrieNode();
// Stores count of pairs that
// satisfy the given conditions
int cntPairs = 0;
// Traverse the given array.
for(int i = 0;i < N; i++){
// Update cntPairs
cntPairs += cntGreater(root,
arr[i], K);
// Insert arr[i] into Trie.
insertTrie(root, arr[i]);
}
return cntPairs;
}
//Driver code
int main()
{
int arr[] = {3, 5, 6, 8};
int K= 2;
int N = sizeof(arr) / sizeof(arr[0]);
cout<<cntGreaterPairs(arr, N, K);
}
Java
// Java program to implement
// the above approach
import java.util.*;
class GFG{
// Structure of Trie
static class TrieNode
{
// Stores binary representation
// of numbers
TrieNode []child = new TrieNode[2];
// Stores count of elements
// present in a node
int cnt;
// Function to initialize
// a Trie Node
TrieNode()
{
child[0] = child[1] = null;
cnt = 0;
}
};
// Function to insert a number
// into Trie
static void insertTrie(TrieNode root,
int N)
{
// Traverse binary representation
// of X.
for (int i = 31; i >= 0; i--)
{
// Stores ith bit of N
int x = (N) & (1 << i);
// Check if an element already
// present in Trie having ith
// bit x.
if (x < 2 && root.child[x] == null)
{
// Create a new node of Trie.
root.child[x] = new TrieNode();
}
// Update count of elements
// whose ith bit is x
if(x < 2 && root.child[x] != null)
root.child[x].cnt += 1;
// Update root.
if(x < 2)
root = root.child[x];
}
}
// Function to count elements
// in Trie whose XOR with N
// exceeds K
static int cntGreater(TrieNode root,
int N, int K)
{
// Stores count of elements
// whose XOR with N exceeding K
int cntPairs = 1;
// Traverse binary representation
// of N and K in Trie
for (int i = 31; i >= 0 &&
root!=null; i--)
{
// Stores ith bit of N
int x = N & (1 << i);
// Stores ith bit of K
int y = K & (1 << i);
// If the ith bit of K is 1
if (y == 1)
{
// Update root.
root = root.child[1 - x];
}
// If the ith bit of K is 0
else
{
// If an element already
// present in Trie having
// ith bit (1 - x)
if (x < 2 &&
root.child[1 - x] != null)
{
// Update cntPairs
cntPairs += root.child[1 - x].cnt;
}
// Update root.
if(x < 2)
root = root.child[x];
}
}
return cntPairs;
}
// Function to count pairs that
// satisfy the given conditions.
static int cntGreaterPairs(int arr[],
int N, int K)
{
// Create root node of Trie
TrieNode root = new TrieNode();
// Stores count of pairs that
// satisfy the given conditions
int cntPairs = 0;
// Traverse the given array.
for (int i = 0; i < N; i++)
{
// Update cntPairs
cntPairs += cntGreater(root,
arr[i], K);
// Insert arr[i] into Trie.
insertTrie(root, arr[i]);
}
return cntPairs;
}
// Driver code
public static void main(String[] args)
{
int arr[] = {3, 5, 6, 8};
int K = 2;
int N = arr.length;
System.out.print(cntGreaterPairs(arr,
N, K));
}
}
// This code is contributed by shikhasingrajput
Python3
# Python3 program to implement
# the above approach
# Structure of Trie
class TrieNode:
# Function to initialize
# a Trie Node
def __init__(self):
self.child = [None, None]
self.cnt = 0
# Function to insert a number into Trie
def insertTrie(root, N):
# Traverse binary representation of X.
for i in range(31, -1, -1):
# Stores ith bit of N
x = bool((N) & (1 << i))
# Check if an element already
# present in Trie having ith bit x.
if (root.child[x] == None):
# Create a new node of Trie.
root.child[x] = TrieNode()
# Update count of elements
# whose ith bit is x
root.child[x].cnt += 1
# Update root
root= root.child[x]
# Function to count elements
# in Trie whose XOR with N
# exceeds K
def cntGreater(root, N, K):
# Stores count of elements
# whose XOR with N exceeding K
cntPairs = 0
# Traverse binary representation
# of N and K in Trie
for i in range(31, -1, -1):
if (root == None):
break
# Stores ith bit of N
x = bool(N & (1 << i))
# Stores ith bit of K
y = K & (1 << i)
# If the ith bit of K is 1
if (y != 0):
# Update root
root = root.child[1 - x]
# If the ith bit of K is 0
else:
# If an element already
# present in Trie having
# ith bit (1 - x)
if (root.child[1 - x]):
# Update cntPairs
cntPairs += root.child[1 - x].cnt
# Update root
root = root.child[x]
return cntPairs
# Function to count pairs that
# satisfy the given conditions.
def cntGreaterPairs(arr, N, K):
# Create root node of Trie
root = TrieNode()
# Stores count of pairs that
# satisfy the given conditions
cntPairs = 0
# Traverse the given array.
for i in range(N):
# Update cntPairs
cntPairs += cntGreater(root, arr[i], K)
# Insert arr[i] into Trie.
insertTrie(root, arr[i])
return cntPairs
# Driver code
if __name__=='__main__':
arr = [ 3, 5, 6, 8 ]
K = 2
N = len(arr)
print(cntGreaterPairs(arr, N, K))
# This code is contributed by rutvik_56
C#
// C# program to implement
// the above approach
using System;
class GFG{
// Structure of Trie
public class TrieNode
{
// Stores binary representation
// of numbers
public TrieNode []child = new TrieNode[2];
// Stores count of elements
// present in a node
public int cnt;
// Function to initialize
// a Trie Node
public TrieNode()
{
child[0] = child[1] = null;
cnt = 0;
}
};
// Function to insert a number
// into Trie
static void insertTrie(TrieNode root,
int N)
{
// Traverse binary representation
// of X.
for(int i = 31; i >= 0; i--)
{
// Stores ith bit of N
int x = (N) & (1 << i);
// Check if an element already
// present in Trie having ith
// bit x.
if (x < 2 && root.child[x] == null)
{
// Create a new node of Trie.
root.child[x] = new TrieNode();
}
// Update count of elements
// whose ith bit is x
if(x < 2 && root.child[x] != null)
root.child[x].cnt += 1;
// Update root.
if(x < 2)
root = root.child[x];
}
}
// Function to count elements
// in Trie whose XOR with N
// exceeds K
static int cntGreater(TrieNode root,
int N, int K)
{
// Stores count of elements
// whose XOR with N exceeding K
int cntPairs = 1;
// Traverse binary representation
// of N and K in Trie
for(int i = 31; i >= 0 &&
root != null; i--)
{
// Stores ith bit of N
int x = N & (1 << i);
// Stores ith bit of K
int y = K & (1 << i);
// If the ith bit of K is 1
if (y == 1)
{
// Update root.
root = root.child[1 - x];
}
// If the ith bit of K is 0
else
{
// If an element already
// present in Trie having
// ith bit (1 - x)
if (x < 2 &&
root.child[1 - x] != null)
{
// Update cntPairs
cntPairs += root.child[1 - x].cnt;
}
// Update root.
if(x < 2)
root = root.child[x];
}
}
return cntPairs;
}
// Function to count pairs that
// satisfy the given conditions.
static int cntGreaterPairs(int []arr,
int N, int K)
{
// Create root node of Trie
TrieNode root = new TrieNode();
// Stores count of pairs that
// satisfy the given conditions
int cntPairs = 0;
// Traverse the given array.
for(int i = 0; i < N; i++)
{
// Update cntPairs
cntPairs += cntGreater(root,
arr[i], K);
// Insert arr[i] into Trie.
insertTrie(root, arr[i]);
}
return cntPairs;
}
// Driver code
public static void Main(String[] args)
{
int []arr = { 3, 5, 6, 8 };
int K = 2;
int N = arr.Length;
Console.Write(cntGreaterPairs(arr,
N, K));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// Javascript program to implement
// the above approach
// Structure of Trie
class TrieNode
{
constructor()
{
this.child = new Array(2);
this.child[0] = this.child[1] = null;
this.cnt = 0;
}
}
// Function to insert a number
// into Trie
function insertTrie(root,N)
{
// Traverse binary representation
// of X.
for (let i = 31; i >= 0; i--)
{
// Stores ith bit of N
let x = (N) & (1 << i);
// Check if an element already
// present in Trie having ith
// bit x.
if (x < 2 && root.child[x] == null)
{
// Create a new node of Trie.
root.child[x] = new TrieNode();
}
// Update count of elements
// whose ith bit is x
if(x < 2 && root.child[x] != null)
root.child[x].cnt += 1;
// Update root.
if(x < 2)
root = root.child[x];
}
}
// Function to count elements
// in Trie whose XOR with N
// exceeds K
function cntGreater(root, N, K)
{
// Stores count of elements
// whose XOR with N exceeding K
let cntPairs = 1;
// Traverse binary representation
// of N and K in Trie
for (let i = 31; i >= 0 &&
root!=null; i--)
{
// Stores ith bit of N
let x = N & (1 << i);
// Stores ith bit of K
let y = K & (1 << i);
// If the ith bit of K is 1
if (y == 1)
{
// Update root.
root = root.child[1 - x];
}
// If the ith bit of K is 0
else
{
// If an element already
// present in Trie having
// ith bit (1 - x)
if (x < 2 &&
root.child[1 - x] != null)
{
// Update cntPairs
cntPairs += root.child[1 - x].cnt;
}
// Update root.
if(x < 2)
root = root.child[x];
}
}
return cntPairs;
}
// Function to count pairs that
// satisfy the given conditions.
function cntGreaterPairs(arr,N,K)
{
// Create root node of Trie
let root = new TrieNode();
// Stores count of pairs that
// satisfy the given conditions
let cntPairs = 0;
// Traverse the given array.
for (let i = 0; i < N; i++)
{
// Update cntPairs
cntPairs += cntGreater(root,
arr[i], K);
// Insert arr[i] into Trie.
insertTrie(root, arr[i]);
}
return cntPairs;
}
// Driver code
let arr=[3, 5, 6, 8];
let K = 2;
let N = arr.length;
document.write(cntGreaterPairs(arr,N, K));
// This code is contributed by patel2127
</script>
Time Complexity:O(N * 32)
Auxiliary Space:O(N * 32)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem