Count possible binary strings of length N without P consecutive 0s and Q consecutive 1s
Last Updated :
26 Jul, 2025
Given three integers N, P, and Q, the task is to count all possible distinct binary strings of length N such that each binary string does not contain P times consecutive 0’s and Q times consecutive 1's.
Examples:
Input: N = 5, P = 2, Q = 3
Output: 7
Explanation: Binary strings that satisfy the given conditions are { “01010”, “01011”, “01101”, “10101”, “10110”, “11010”, “11011”}. Therefore, the required output is 7.
Input: N = 5, P = 3, Q = 4
Output: 21
Naive Approach: The problem can be solved using Recursion. Following are the recurrence relations and their base cases :
At each possible index of a Binary String, either place the value '0' or place the value '1'
Therefore, cntBinStr(str, N, P, Q) = cntBinStr(str + '0', N, P, Q) + cntBinStr(str + '1', N, P, Q)
where cntBinStr(str, N, P, Q) stores the count of distinct binary strings which does not contain P consecutive 1s and Q consecutive 0s.
Base Case: If length(str) == N, check if str satisfy the given condition or not. If found to be true, return 1. Otherwise, return 0.
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if a
// string satisfy the given
// condition or not
bool checkStr(string str,
int P, int Q)
{
// Stores the length
// of string
int N = str.size();
// Stores the previous
// character of the string
char prev = str[0];
// Stores the count of
// consecutive equal characters
int cnt = 0;
// Traverse the string
for (int i = 0; i < N;
i++) {
// If current character
// is equal to the
// previous character
if (str[i] == prev) {
cnt++;
}
else {
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q) {
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P) {
return false;
}
// Reset value of cnt
cnt = 1;
}
prev = str[i];
}
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q) {
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P) {
return false;
}
return true;
}
// Function to count all distinct
// binary strings that satisfy
// the given condition
int cntBinStr(string str, int N,
int P, int Q)
{
// Stores the length of str
int len = str.size();
// If length of str is N
if (len == N) {
// If str satisfy
// the given condition
if (checkStr(str, P, Q))
return 1;
// If str does not satisfy
// the given condition
return 0;
}
// Append a character '0' at
// end of str
int X = cntBinStr(str + '0',
N, P, Q);
// Append a character '1' at
// end of str
int Y = cntBinStr(str + '1',
N, P, Q);
// Return total count
// of binary strings
return X + Y;
}
// Driver Code
int main()
{
int N = 5, P = 2, Q = 3;
cout << cntBinStr("", N, P, Q);
return 0;
}
Java
// Java program to implement
// the above approach
import java.io.*;
class GFG{
// Function to check if a
// string satisfy the given
// condition or not
static boolean checkStr(String str,
int P, int Q)
{
// Stores the length
// of string
int N = str.length();
// Stores the previous
// character of the string
char prev = str.charAt(0);
// Stores the count of
// consecutive equal characters
int cnt = 0;
// Traverse the string
for(int i = 0; i < N; i++)
{
// If current character
// is equal to the
// previous character
if (str.charAt(i) == prev)
{
cnt++;
}
else
{
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q)
{
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P)
{
return false;
}
// Reset value of cnt
cnt = 1;
}
prev = str.charAt(i);
}
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q)
{
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P)
{
return false;
}
return true;
}
// Function to count all distinct
// binary strings that satisfy
// the given condition
static int cntBinStr(String str, int N,
int P, int Q)
{
// Stores the length of str
int len = str.length();
// If length of str is N
if (len == N)
{
// If str satisfy
// the given condition
if (checkStr(str, P, Q))
return 1;
// If str does not satisfy
// the given condition
return 0;
}
// Append a character '0' at
// end of str
int X = cntBinStr(str + '0',
N, P, Q);
// Append a character '1' at
// end of str
int Y = cntBinStr(str + '1',
N, P, Q);
// Return total count
// of binary strings
return X + Y;
}
// Driver Code
public static void main (String[] args)
{
int N = 5, P = 2, Q = 3;
System.out.println(cntBinStr("", N, P, Q));
}
}
// This code is contributed by code_hunt
Python3
# Python3 program to implement
# the above approach
# Function to check if a
# satisfy the given
# condition or not
def checkStr(str, P, Q):
# Stores the length
# of string
N = len(str)
# Stores the previous
# character of the string
prev = str[0]
# Stores the count of
# consecutive equal
# characters
cnt = 0
# Traverse the string
for i in range(N):
# If current character
# is equal to the
# previous character
if (str[i] == prev):
cnt += 1
else:
# If count of consecutive
# 1s is more than Q
if (prev == '1' and
cnt >= Q):
return False
# If count of consecutive
# 0s is more than P
if (prev == '0' and
cnt >= P):
return False
# Reset value of cnt
cnt = 1
prev = str[i]
# If count of consecutive
# 1s is more than Q
if (prev == '1'and
cnt >= Q):
return False
# If count of consecutive
# 0s is more than P
if (prev == '0' and
cnt >= P):
return False
return True
# Function to count all
# distinct binary strings
# that satisfy the given
# condition
def cntBinStr(str, N,
P, Q):
# Stores the length
# of str
lenn = len(str)
# If length of str
# is N
if (lenn == N):
# If str satisfy
# the given condition
if (checkStr(str, P, Q)):
return 1
# If str does not satisfy
# the given condition
return 0
# Append a character '0'
# at end of str
X = cntBinStr(str + '0',
N, P, Q)
# Append a character
# '1' at end of str
Y = cntBinStr(str + '1',
N, P, Q)
# Return total count
# of binary strings
return X + Y
# Driver Code
if __name__ == '__main__':
N = 5
P = 2
Q = 3
print(cntBinStr("", N,
P, Q))
# This code is contributed by mohit kumar 29
C#
// C# program to implement
// the above approach
using System;
class GFG{
// Function to check if a
// string satisfy the given
// condition or not
static bool checkStr(string str,
int P, int Q)
{
// Stores the length
// of string
int N = str.Length;
// Stores the previous
// character of the string
char prev = str[0];
// Stores the count of
// consecutive equal characters
int cnt = 0;
// Traverse the string
for(int i = 0; i < N; i++)
{
// If current character
// is equal to the
// previous character
if (str[i] == prev)
{
cnt++;
}
else
{
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q)
{
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P)
{
return false;
}
// Reset value of cnt
cnt = 1;
}
prev = str[i];
}
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q)
{
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P)
{
return false;
}
return true;
}
// Function to count all distinct
// binary strings that satisfy
// the given condition
static int cntBinStr(string str, int N,
int P, int Q)
{
// Stores the length of str
int len = str.Length;
// If length of str is N
if (len == N)
{
// If str satisfy
// the given condition
if (checkStr(str, P, Q))
return 1;
// If str does not satisfy
// the given condition
return 0;
}
// Append a character '0' at
// end of str
int X = cntBinStr(str + '0',
N, P, Q);
// Append a character '1' at
// end of str
int Y = cntBinStr(str + '1',
N, P, Q);
// Return total count
// of binary strings
return X + Y;
}
// Driver Code
public static void Main ()
{
int N = 5, P = 2, Q = 3;
Console.WriteLine(cntBinStr("", N, P, Q));
}
}
// This code is contributed by sanjoy_62
JavaScript
<script>
// Javascript program to implement
// the above approach
// Function to check if a
// string satisfy the given
// condition or not
function checkStr(str, P, Q)
{
// Stores the length
// of string
let N = str.length;
// Stores the previous
// character of the string
let prev = str[0];
// Stores the count of
// consecutive equal characters
let cnt = 0;
// Traverse the string
for(let i = 0; i < N; i++)
{
// If current character
// is equal to the
// previous character
if (str[i] == prev)
{
cnt++;
}
else
{
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q)
{
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P)
{
return false;
}
// Reset value of cnt
cnt = 1;
}
prev = str[i];
}
// If count of consecutive
// 1s is more than Q
if (prev == '1' && cnt >= Q)
{
return false;
}
// If count of consecutive
// 0s is more than P
if (prev == '0' && cnt >= P)
{
return false;
}
return true;
}
// Function to count all distinct
// binary strings that satisfy
// the given condition
function cntBinStr(str, N, P, Q)
{
// Stores the length of str
let len = str.length;
// If length of str is N
if (len == N)
{
// If str satisfy
// the given condition
if (checkStr(str, P, Q))
return 1;
// If str does not satisfy
// the given condition
return 0;
}
// Append a character '0' at
// end of str
let X = cntBinStr(str + '0',
N, P, Q);
// Append a character '1' at
// end of str
let Y = cntBinStr(str + '1',
N, P, Q);
// Return total count
// of binary strings
return X + Y;
}
// Driver Code
let N = 5, P = 2, Q = 3;
document.write(cntBinStr("", N, P, Q));
</script>
Time Complexity: O(2N)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach the idea is to use Dynamic Programming. Follow the steps below to solve the problem:
- Initialize two 2D arrays, say zero[N][P] and one[N][Q].
- zero[i][j] stores the count of binary strings of length i having j consecutive 0's. Fill all the value of zero[i][j] in bottom-up manner.
Insert 0 at the ith index.
Case 1: If (i - 1)th index of string contains 1.
zero[i][1] = \sum\limits_{j=1}^{Q - 1}one[i - 1][j]
Case 2: If (i - 1)th index of string contains 0.
zero[i][j] = zero[i-1][j-1]
for all r in the range [2, P - 1].
- one[i][j] stores the count of binary strings of length i having j consecutive 1's. Fill all the value of zero[i][j] in bottom-up manner.
Insert 1 at the ith index.
Case 1: If (i-1)th index of string contains 0.
one[i][1] = \sum\limits_{j=1}^{P - 1}zero[i - 1][j]
Case 2: If (i-1)th index of string contains 1.
one[i][j] = one[i-1][j-1]
for all j in the range [2, Q - 1].
- Finally, print count of subarrays that satisfy the given condition.
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to count binary strings
// that satisfy the given condition
int cntBinStr(int N, int P, int Q)
{
// zero[i][j] stores count
// of binary strings of length i
// having j consecutive 0s
int zero[N + 1][P];
// one[i][j] stores count
// of binary strings of length i
// having j consecutive 1s
int one[N + 1][Q];
// Set all values of
// zero[][] array to 0
memset(zero, 0, sizeof(zero));
// Set all values of
// one[i][j] array to 0
memset(one, 0, sizeof(one));
// Base case
zero[1][1] = one[1][1] = 1;
// Fill all the values of zero[i][j]
// and one[i][j] in bottom up manner
for (int i = 2; i <= N; i++) {
for (int j = 2; j < P;
j++) {
zero[i][j] = zero[i - 1][j - 1];
}
for (int j = 1; j < Q;
j++) {
zero[i][1] = zero[i][1] + one[i - 1][j];
}
for (int j = 2; j < Q;
j++) {
one[i][j] = one[i - 1][j - 1];
}
for (int j = 1; j < P;
j++) {
one[i][1] = one[i][1] + zero[i - 1][j];
}
}
// Stores count of binary strings
// that satisfy the given condition
int res = 0;
// Count binary strings of
// length N having less than
// P consecutive 0s
for (int i = 1; i < P; i++) {
res = res + zero[N][i];
}
// Count binary strings of
// length N having less than
// Q consecutive 1s
for (int i = 1; i < Q; i++) {
res = res + one[N][i];
}
return res;
}
// Driver Code
int main()
{
int N = 5, P = 2, Q = 3;
cout << cntBinStr(N, P, Q);
return 0;
}
Java
// Java program to implement
// the above approach
import java.io.*;
class GFG{
// Function to count binary Strings
// that satisfy the given condition
static int cntBinStr(int N, int P, int Q)
{
// zero[i][j] stores count
// of binary Strings of length i
// having j consecutive 0s
int [][]zero = new int[N + 1][P];
// one[i][j] stores count
// of binary Strings of length i
// having j consecutive 1s
int [][]one = new int[N + 1][Q];
// Base case
zero[1][1] = one[1][1] = 1;
// Fill all the values of zero[i][j]
// and one[i][j] in bottom up manner
for(int i = 2; i <= N; i++)
{
for(int j = 2; j < P; j++)
{
zero[i][j] = zero[i - 1][j - 1];
}
for(int j = 1; j < Q; j++)
{
zero[i][1] = zero[i][1] +
one[i - 1][j];
}
for(int j = 2; j < Q; j++)
{
one[i][j] = one[i - 1][j - 1];
}
for(int j = 1; j < P; j++)
{
one[i][1] = one[i][1] +
zero[i - 1][j];
}
}
// Stores count of binary Strings
// that satisfy the given condition
int res = 0;
// Count binary Strings of
// length N having less than
// P consecutive 0s
for(int i = 1; i < P; i++)
{
res = res + zero[N][i];
}
// Count binary Strings of
// length N having less than
// Q consecutive 1s
for(int i = 1; i < Q; i++)
{
res = res + one[N][i];
}
return res;
}
// Driver Code
public static void main(String[] args)
{
int N = 5, P = 2, Q = 3;
System.out.print(cntBinStr(N, P, Q));
}
}
// This code is contributed by Amit Katiyar
Python3
# Python3 program to implement
# the above approach
# Function to count binary
# Strings that satisfy the
# given condition
def cntBinStr(N, P, Q):
# zero[i][j] stores count
# of binary Strings of length i
# having j consecutive 0s
zero = [[0 for i in range(P)]
for j in range(N + 1)];
# one[i][j] stores count
# of binary Strings of length i
# having j consecutive 1s
one = [[0 for i in range(Q)]
for j in range(N + 1)];
# Base case
zero[1][1] = one[1][1] = 1;
# Fill all the values of
# zero[i][j] and one[i][j]
# in bottom up manner
for i in range(2, N + 1):
for j in range(2, P):
zero[i][j] = zero[i - 1][j - 1];
for j in range(1, Q):
zero[i][1] = (zero[i][1] +
one[i - 1][j]);
for j in range(2, Q):
one[i][j] = one[i - 1][j - 1];
for j in range(1, P):
one[i][1] = one[i][1] + zero[i - 1][j];
# Stores count of binary
# Strings that satisfy
# the given condition
res = 0;
# Count binary Strings of
# length N having less than
# P consecutive 0s
for i in range(1, P):
res = res + zero[N][i];
# Count binary Strings of
# length N having less than
# Q consecutive 1s
for i in range(1, Q):
res = res + one[N][i];
return res;
# Driver Code
if __name__ == '__main__':
N = 5;
P = 2;
Q = 3;
print(cntBinStr(N, P, Q));
# This code is contributed by gauravrajput1
C#
// C# program to implement
// the above approach
using System;
class GFG{
// Function to count binary Strings
// that satisfy the given condition
static int cntBinStr(int N, int P, int Q)
{
// zero[i,j] stores count
// of binary Strings of length i
// having j consecutive 0s
int [,]zero = new int[N + 1, P];
// one[i,j] stores count
// of binary Strings of length i
// having j consecutive 1s
int [,]one = new int[N + 1, Q];
// Base case
zero[1, 1] = one[1, 1] = 1;
// Fill all the values of zero[i,j]
// and one[i,j] in bottom up manner
for(int i = 2; i <= N; i++)
{
for(int j = 2; j < P; j++)
{
zero[i, j] = zero[i - 1, j - 1];
}
for(int j = 1; j < Q; j++)
{
zero[i, 1] = zero[i, 1] +
one[i - 1, j];
}
for(int j = 2; j < Q; j++)
{
one[i, j] = one[i - 1, j - 1];
}
for(int j = 1; j < P; j++)
{
one[i, 1] = one[i, 1] +
zero[i - 1, j];
}
}
// Stores count of binary Strings
// that satisfy the given condition
int res = 0;
// Count binary Strings of
// length N having less than
// P consecutive 0s
for(int i = 1; i < P; i++)
{
res = res + zero[N, i];
}
// Count binary Strings of
// length N having less than
// Q consecutive 1s
for(int i = 1; i < Q; i++)
{
res = res + one[N, i];
}
return res;
}
// Driver Code
public static void Main(String[] args)
{
int N = 5, P = 2, Q = 3;
Console.Write(cntBinStr(N, P, Q));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// JavaScript program to implement
// the above approach
// Function to count binary strings
// that satisfy the given condition
function cntBinStr(N, P, Q)
{
// zero[i][j] stores count
// of binary strings of length i
// having j consecutive 0s
//and
// Set all values of
// zero[][] array to 0
var zero = new Array(N+1).fill(0).
map(item=>(new Array(P).fill(0)));
// one[i][j] stores count
// of binary strings of length i
// having j consecutive 1s
//and
// Set all values of
// one[i][j] array to 0
var one = new Array(N+1).fill(0).
map(item=>(new Array(Q).fill(0)));;
// Base case
zero[1][1] = one[1][1] = 1;
// Fill all the values of zero[i][j]
// and one[i][j] in bottom up manner
for (var i = 2; i <= N; i++) {
for (var j = 2; j < P;
j++) {
zero[i][j] = zero[i - 1][j - 1];
}
for (var j = 1; j < Q;
j++) {
zero[i][1] = zero[i][1] + one[i - 1][j];
}
for (var j = 2; j < Q;
j++) {
one[i][j] = one[i - 1][j - 1];
}
for (var j = 1; j < P;
j++) {
one[i][1] = one[i][1] + zero[i - 1][j];
}
}
// Stores count of binary strings
// that satisfy the given condition
var res = 0;
// Count binary strings of
// length N having less than
// P consecutive 0s
for (var i = 1; i < P; i++) {
res = res + zero[N][i];
}
// Count binary strings of
// length N having less than
// Q consecutive 1s
for (var i = 1; i < Q; i++) {
res = res + one[N][i];
}
return res;
}
var N = 5, P = 2, Q = 3;
document.write( cntBinStr(N, P, Q));
// This code in contributed by SoumikMondal
</script>
Time complexity: O(N * (P + Q))
Auxiliary Space: O(N * (P + Q))
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem