Counting frequencies of array elements
Last Updated :
26 Jul, 2025
Given an array arr[] of non-negative integers which may contain duplicate elements. Return the frequency of each distinct element present in the array.
Examples:
Input: arr[] = [10, 20, 10, 5, 20]
Output: [[5, 1], [10, 2], [20, 2]]
Explanation: Here 5 occurs once, 10 occurs 2 times and 20 occurs 2 times.
Input: arr[] = [10, 20, 20]
Output: [[10, 1], [20, 2]]
Explanation: Here 10 occurs 1 time, 20 occurs 2 times.
[Naive Approach] Brute Force - O(n2) Time O(n) Space
A simple solution is to run two loops. For every item count number of times, it occurs. To avoid duplicate printing, keep track of processed items.
C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<vector<int>> countFreq(vector<int>& arr){
int n = arr.size();
// Mark all array elements as not visited
vector<bool> visited(n , false);
vector<vector<int>>ans;
for (int i = 0; i < n; i++) {
// Skip this element if already processed
if (visited[i] == true)
continue;
// store the frequency
int count = 1;
for (int j = i + 1; j < n; j++) {
if (arr[i] == arr[j]) {
visited[j] = true;
count++;
}
}
ans.push_back({arr[i] , count});
}
return ans;
}
int main(){
vector <int> arr = {10, 20, 10, 5, 20};
vector<vector<int>>ans = countFreq(arr);
sort(ans.begin(), ans.end()) ;
for (auto x : ans){
cout << x[0] << ' '<< x[1] <<'\n';
}
return 0 ;
}
Java
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
public class GfG {
public static ArrayList<ArrayList<Integer>> countFreq(int[] arr) {
int n = arr.length;
// Mark all array elements as not visited
boolean[] visited = new boolean[n];
ArrayList<ArrayList<Integer>> ans = new ArrayList<>();
for (int i = 0; i < n; i++) {
// Skip this element if already processed
if (visited[i])
continue;
int count = 1;
// store the frequency
for (int j = i + 1; j < n; j++) {
if (arr[i] == arr[j]) {
visited[j] = true;
count++;
}
}
ArrayList<Integer> temp = new ArrayList<>();
temp.add(arr[i]);
temp.add(count);
ans.add(temp);
}
return ans;
}
public static void main(String[] args) {
int[] arr = {10, 20, 10, 5, 20};
ArrayList<ArrayList<Integer>> ans = countFreq(arr);
Collections.sort(ans, new Comparator<ArrayList<Integer>>() {
public int compare(ArrayList<Integer> a, ArrayList<Integer> b) {
return Integer.compare(a.get(0), b.get(0));
}
});
for (ArrayList<Integer> x : ans) {
System.out.println(x.get(0) + " " + x.get(1));
}
}
}
Python
def countFreq(arr):
n = len(arr)
# Mark all array elements as not visited
visited = [False] * n
ans = []
for i in range(n):
# Skip this element if already processed
if visited[i]:
continue
# store the frequency
count = 1
for j in range(i + 1, n):
if arr[i] == arr[j]:
visited[j] = True
count += 1
ans.append([arr[i], count])
return ans
if __name__ == '__main__':
arr = [10, 20, 10, 5, 20]
ans = countFreq(arr)
ans.sort(key=lambda x: x[0])
for x in ans:
print(x[0], x[1])
C#
using System;
using System.Collections.Generic;
class GfG {
public static List<List<int>> countFreq(int[] arr) {
int n = arr.Length;
// Mark all array elements as not visited
bool[] visited = new bool[n];
List<List<int>> ans = new List<List<int>>();
for (int i = 0; i < n; i++) {
// Skip this element if already processed
if (visited[i])
continue;
// store the frequency
int count = 1;
for (int j = i + 1; j < n; j++) {
if (arr[i] == arr[j]) {
visited[j] = true;
count++;
}
}
List<int> temp = new List<int>();
temp.Add(arr[i]);
temp.Add(count);
ans.Add(temp);
}
return ans;
}
static void Main() {
int[] arr = {10, 20, 10, 5, 20};
List<List<int>> ans = countFreq(arr);
ans.Sort((a, b) => a[0].CompareTo(b[0]));
foreach (var x in ans) {
Console.WriteLine(x[0] + " " + x[1]);
}
}
}
JavaScript
function countFreq(arr) {
let n = arr.length;
// Mark all array elements as not visited
let visited = Array(n).fill(false);
let ans = [];
for (let i = 0; i < n; i++) {
// Skip this element if already processed
if (visited[i]) continue;
// store the frequency
let count = 1;
for (let j = i + 1; j < n; j++) {
if (arr[i] === arr[j]) {
visited[j] = true;
count++;
}
}
ans.push([arr[i], count]);
}
return ans;
}
// Driver Code
let arr = [10, 20, 10, 5, 20];
let ans = countFreq(arr);
ans.sort((a, b) => a[0] - b[0]);
for (let x of ans) {
console.log(x[0], x[1]);
}
[Better Approach] Using binary search
We can find frequency of array elements using Binary search function . First we will sort the array for binary search . Our frequency of element will be '(last occ - first occ) + 1' of a element in a array.
C++
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
vector<vector<int>> countFreq(vector<int> &arr){
int n = arr.size();
// Sort array for binary search
sort(arr.begin(), arr.end());
vector<vector<int>> ans;
for (int i = 0; i < n; i++) {
// Find first and last occurrence of arr[i]
// using lower and upper bound
auto firstIter = lower_bound(arr.begin(), arr.end(), arr[i]);
auto lastIter = upper_bound(arr.begin(), arr.end(), arr[i]);
int firstIndex = firstIter - arr.begin();
int lastIndex = lastIter - arr.begin() - 1;
// Calculate frequency
int fre = lastIndex - firstIndex + 1;
ans.push_back({arr[i], fre});
// Skip counted elements
i = lastIndex;
}
return ans;
}
int main(){
vector<int> arr = {10 ,20 ,10 ,5 , 20};
vector<vector<int>> ans = countFreq(arr);
for (auto x : ans){
cout << x[0] << " " << x[1] << endl;
}
return 0;
}
Java
import java.util.ArrayList;
import java.util.Arrays;
public class GFG {
public static ArrayList<ArrayList<Integer>> countFreq(int[] arr) {
Arrays.sort(arr);
ArrayList<ArrayList<Integer>> ans = new ArrayList<>();
int n = arr.length;
int i = 0;
while (i < n) {
int current = arr[i];
int firstIndex = i;
int lastIndex = i;
// Find lastIndex by moving forward
while (lastIndex + 1 < n &&
arr[lastIndex + 1] == current)
lastIndex++;
// Calculate frequency
int fre = lastIndex - firstIndex + 1;
// Store in ans as ArrayList
ArrayList<Integer> temp = new ArrayList<>();
temp.add(current);
temp.add(fre);
ans.add(temp);
// Skip counted elements
i = lastIndex + 1;
}
return ans;
}
public static void main(String[] args) {
int[] arr = {10, 20, 5, 10, 20};
ArrayList<ArrayList<Integer>> ans = countFreq(arr);
for (ArrayList<Integer> x : ans) {
System.out.println(x.get(0) + " " + x.get(1));
}
}
}
Python
from bisect import bisect_left, bisect_right
def countFreq(arr):
n = len(arr)
# Sort array for binary search
arr.sort()
ans = []
i = 0
while i < n:
# Find first and last occurrence of arr[i]
# using bisect_left and bisect_right
firstIndex = bisect_left(arr, arr[i])
lastIndex = bisect_right(arr, arr[i]) - 1
# Calculate frequency
fre = lastIndex - firstIndex + 1
ans.append([arr[i], fre])
# Skip counted elements
i = lastIndex + 1
return ans
if __name__ == "__main__":
arr = [10, 20, 10, 5, 20]
ans = countFreq(arr)
for x in ans:
print(x[0], x[1])
C#
using System;
using System.Collections.Generic;
class GFG{
public static List<List<int>> countFreq(int[] arr){
Array.Sort(arr);
int n = arr.Length;
List<List<int>> ans = new List<List<int>>();
int i = 0;
while (i < n){
int current = arr[i];
int firstIndex = i;
int lastIndex = i;
// Find lastIndex by moving forward
while (lastIndex + 1 < n &&
arr[lastIndex + 1] == current)
lastIndex++;
// Calculate frequency
int fre = lastIndex - firstIndex + 1;
// store in arrayList
List<int> temp = new List<int> { current, fre };
ans.Add(temp);
// Skip counted elements
i = lastIndex + 1;
}
return ans;
}
static void Main(){
int[] arr = {10, 20, 10, 5, 20};
List<List<int>> ans = countFreq(arr);
foreach (var x in ans){
Console.WriteLine(x[0] + " " + x[1]);
}
}
}
JavaScript
function countFreq(arr) {
arr.sort((a, b) => a - b);
const n = arr.length;
const ans = [];
let i = 0;
while (i < n) {
let current = arr[i];
let firstIndex = i;
let lastIndex = i;
// Find lastIndex by moving forward
while (lastIndex + 1 < n &&
arr[lastIndex + 1] === current)
lastIndex++;
// Calculate frequency
const fre = lastIndex - firstIndex + 1;
//store in array list
ans.push([current, fre]);
// Skip counted elements
i = lastIndex + 1;
}
return ans;
}
// Driver Code
const arr = [10, 20, 10, 5, 20];
const ans = countFreq(arr);
for (let x of ans) {
console.log(x[0], x[1]);
}
Time Complexity: O(n × log2n) , where O(log2n) time for binary search function.
Auxiliary Space: O(1), as using constant extra space
[Expected Solution] Using hashing - O(n) Time and O(n) Space
An efficient solution is using a hash map (e.g. unordered_map in C++, HashMap in Java, dict in Python, or Dictionary in C#), we can store elements as keys and their frequencies as values.
C++
#include <iostream>
#include <unordered_map>
#include <vector>
#include <algorithm>
using namespace std;
vector<vector<int>> countFreq(vector<int>& arr) {
// stores frequency of each number
unordered_map<int, int> mp;
// stores {number, frequency}
vector<vector<int>> ans;
// count frequency using unordered_map
for (int num : arr) {
mp[num]++;
}
// build the answer vector from the frequency map
for (auto &it : mp) {
ans.push_back({it.first, it.second});
}
return ans ;
}
int main() {
vector<int> arr = {10, 20, 10, 5, 20};
vector<vector<int>> ans = countFreq(arr);
// sort the result in ascending order of the number
sort(ans.begin(), ans.end(), [](vector<int>& a,
vector<int>& b) {
return a[0] < b[0];
});
for (auto &x : ans) {
cout << x[0] << " " << x[1] << endl;
}
return 0;
}
Java
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
public class GfG {
public static ArrayList<ArrayList<Integer>> countFreq(int[] arr) {
// stores frequency of each number
HashMap<Integer, Integer> mp = new HashMap<>();
// stores {number, frequency}
ArrayList<ArrayList<Integer>> ans = new ArrayList<>();
// count frequency using HashMap
for (int num : arr) {
mp.put(num, mp.getOrDefault(num, 0) + 1);
}
// build the answer list from the frequency map
for (Map.Entry<Integer, Integer> entry : mp.entrySet()) {
ArrayList<Integer> temp = new ArrayList<>();
temp.add(entry.getKey());
temp.add(entry.getValue());
ans.add(temp);
}
return ans;
}
public static void main(String[] args) {
int[] arr = {10, 20, 10, 5, 20};
ArrayList<ArrayList<Integer>> ans = countFreq(arr);
// sort the result in ascending order of the number
ans.sort((a, b) -> Integer.compare(a.get(0), b.get(0)));
for (ArrayList<Integer> x : ans) {
System.out.println(x.get(0) + " " + x.get(1));
}
}
}
Python
def countFreq(arr):
# stores frequency of each number
mp = {}
# stores [number, frequency]
ans = []
# count frequency using dictionary
for num in arr:
mp[num] = mp.get(num, 0) + 1
# Build the answer list from the frequency map
for num, freq in mp.items():
ans.append([num, freq])
return ans
if __name__ == "__main__":
arr = [10, 20, 10, 5, 20]
ans = countFreq(arr)
# sort the result in ascending order of the number
ans.sort(key=lambda x: x[0])
for x in ans:
print(x[0], x[1])
C#
using System;
using System.Collections.Generic;
class GfG {
public static List<List<int>> countFreq(int[] arr) {
// stores frequency of each number
Dictionary<int, int> mp = new Dictionary<int, int>();
// stores {number, frequency}
List<List<int>> ans = new List<List<int>>();
// count frequency using Dictionary
foreach (int num in arr) {
if (!mp.ContainsKey(num)) {
mp[num] = 1;
} else {
mp[num]++;
}
}
// Build the answer list from the frequency map
foreach (var entry in mp) {
ans.Add(new List<int> { entry.Key, entry.Value });
}
return ans;
}
static void Main() {
int[] arr = {10, 20, 10, 5, 20};
List<List<int>> ans = countFreq(arr);
// sort the result in ascending order of the number
ans.Sort((a, b) => a[0].CompareTo(b[0]));
foreach (var x in ans) {
Console.WriteLine(x[0] + " " + x[1]);
}
}
}
JavaScript
function countFreq(arr) {
// stores frequency of each number
const mp = {};
// stores [number, frequency]
const ans = [];
// count frequency using object
for (let num of arr) {
mp[num] = (mp[num] || 0) + 1;
}
// Build the answer array from the frequency map
for (let num in mp) {
ans.push([parseInt(num), mp[num]]);
}
return ans;
}
// Driver Code
const arr = [10, 20, 10, 5, 20];
let ans = countFreq(arr);
// sort the result in ascending order of the number
ans.sort((a, b) => a[0] - b[0]);
for (let x of ans) {
console.log(x[0], x[1]);
}
C++ Program to Count Frequency of Each Element in an Array
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem