Difference between Parallel Computing and Distributed Computing Last Updated : 03 Nov, 2024 Comments Improve Suggest changes Like Article Like Report IntroductionParallel Computing and Distributed Computing are two important models of computing that have important roles in today’s high-performance computing. Both are designed to perform a large number of calculations breaking down the processes into several parallel tasks; however, they differ in structure, function, and utilization. Therefore, in the following article, there is a dissection of Parallel Computing and Distributed Computing, their gains, losses, and applications. Table of ContentWhat is Parallel Computing?Advantages of Parallel ComputingDisadvantages of Parallel ComputingWhat is Distributed Computing?Advantages of Distributed Computing Disadvantages of Distributed ComputingDifference between Parallel Computing and Distributed Computing:FAQs for Difference between Parallel Computing and Distributed ComputingWhat is Parallel Computing?In parallel computing multiple processors performs multiple tasks assigned to them simultaneously. Memory in parallel systems can either be shared or distributed. Parallel computing provides concurrency and saves time and money. ExamplesBlockchains, Smartphones, Laptop computers, Internet of Things, Artificial intelligence and machine learning, Space shuttle, Supercomputers are the technologies that uses Parallel computing technology. Advantages of Parallel Computing Increased Speed: In this technique, several calculations are executed concurrently hence reducing the time of computation required to complete large scale problems. Efficient Use of Resources: Takes full advantage of all the processing units it is equipped with hence making the best use of the machine’s computational power. Scalability: Also the more processors built into the system, the more complex problems can be solved within a short time. Improved Performance for Complex Tasks: Best suited for activities which involve a large numerical calculation like, number simulation, scientific analysis and modeling and data processing. Disadvantages of Parallel ComputingComplexity in Programming: Parallel writing programming that is used in organizing tasks in a parallel manner is even more difficult than that of serial programming. Synchronization Issues: Interaction of various processors when operating concurrently can become synchronized and result in problem areas on the overall communication. Hardware Costs: The implementation of parallel computing does probably involve the use of certain components such as multi-core processors which could possibly be costly than the normal systems. What is Distributed Computing? In distributed computing we have multiple autonomous computers which seems to the user as single system. In distributed systems there is no shared memory and computers communicate with each other through message passing. In distributed computing a single task is divided among different computers. ExamplesArtificial Intelligence and Machine Learning, Scientific Research and High-Performance Computing, Financial Sectors, Energy and Environment sectors, Internet of Things, Blockchain and Cryptocurrencies are the areas where distributed computing is used. Advantages of Distributed Computing Fault Tolerance: The failure of one node means that this node is no longer part of the computations, but that is not fatal for the entire computation since there are other computers participating in the process thereby making the system more reliable. Cost-Effective: Builds upon existing hardware and has flexibility in utilizing commodity machines instead of the need to have expensive and specific processors for its use. Scalability: The distributed systems have the ability to scale and expand horizontally through the addition of more machines in the networks and therefore they can take on greater workloads and processes. Geographic Distribution: Distributed computing makes it possible to execute tasks at different points thereby eliminating latencies. Disadvantages of Distributed Computing Complexity in Management: The task of managing a distributed system itself can be made more difficult since it may require dealing with the latency and/or failure of a network as well as issues related to synchronizing the information to be distributed. Communication Overhead: Inter node communication requirements can actually hinder the package transfer between nodes that are geographically distant and hence the overall performance is greatly compromised. Security Concerns: In general, distributed systems are less secure as compared to centralized system because distributed systems heavily depend on a network. Difference between Parallel Computing and Distributed Computing:S.NOParallel ComputingDistributed Computing1.Many operations are performed simultaneously System components are located at different locations2.Single computer is requiredUses multiple computers3.Multiple processors perform multiple operationsMultiple computers perform multiple operations4.It may have shared or distributed memoryIt have only distributed memory5.Processors communicate with each other through busComputer communicate with each other through message passing.6.Improves the system performanceImproves system scalability, fault tolerance and resource sharing capabilities Conclusion Parallel Computing and Distributed Computing are effective computational models developed with an aim to solve large calamities. Parallel computing is suitable for accelerating computations of a single machine or clustered machines, with emphasis on the rate of processing. On the hand, distributed on the other has many separate and independent computers that are connected over the network focusing on scalability and fault tolerance. Each of the models presented has it own strength and weakness, therefore, the choice between them depends on the conditions of the particular application or system. Comment More infoAdvertise with us Next Article Difference between Loosely Coupled and Tightly Coupled Multiprocessor System A aman neekhara Follow Improve Article Tags : DBMS Difference Between Distributed System Similar Reads Distributed Systems Tutorial A distributed system is a system of multiple nodes that are physically separated but linked together using the network. Each of these nodes includes a small amount of the distributed operating system software. Every node in this system communicates and shares resources with each other and handles pr 8 min read Basics of Distributed SystemWhat is a Distributed System?A distributed system is a collection of independent computers that appear to the users of the system as a single coherent system. These computers or nodes work together, communicate over a network, and coordinate their activities to achieve a common goal by sharing resources, data, and tasks.Table o 7 min read Types of Transparency in Distributed SystemIn distributed systems, transparency plays a pivotal role in abstracting complexities and enhancing user experience by hiding system intricacies. This article explores various types of transparencyâranging from location and access to failure and securityâessential for seamless operation and efficien 6 min read What is Scalable System in Distributed System?In distributed systems, a scalable system refers to the ability of a networked architecture to handle increasing amounts of work or expand to accommodate growth without compromising performance or reliability. Scalability ensures that as demand growsâwhether in terms of user load, data volume, or tr 10 min read Difference between Hardware and MiddlewareHardware and Middleware are both parts of a Computer. Hardware is the combination of physical components in a computer system that perform various tasks such as input, output, processing, and many more. Middleware is the part of software that is the communication medium between application and opera 4 min read Difference between Parallel Computing and Distributed ComputingIntroductionParallel Computing and Distributed Computing are two important models of computing that have important roles in todayâs high-performance computing. Both are designed to perform a large number of calculations breaking down the processes into several parallel tasks; however, they differ in 5 min read Difference between Loosely Coupled and Tightly Coupled Multiprocessor SystemWhen it comes to multiprocessor system architecture, there is a very fine line between loosely coupled and tightly coupled systems, and this is why that difference is very important when choosing an architecture for a specific system. A multiprocessor system is a system in which there are two or mor 5 min read Design Issues of Distributed SystemDistributed systems are used in many real-world applications today, ranging from social media platforms to cloud storage services. They provide the ability to scale up resources as needed, ensure data is available even when a computer fails, and allow users to access services from anywhere. However, 8 min read Communication & RPC in Distributed SystemsFeatures of Good Message Passing in Distributed SystemMessage passing is the interaction of exchanging messages between at least two processors. The cycle which is sending the message to one more process is known as the sender and the process which is getting the message is known as the receiver. In a message-passing system, we can send the message by 3 min read What is Message Buffering?Remote Procedure Call (RPC) is a communication technology that is used by one program to make a request to another program for utilizing its service on a network without even knowing the network's details. The inter-process communication in distributed systems is performed using Message Passing. It 6 min read Group Communication in Distributed SystemsIn distributed systems, efficient group communication is crucial for coordinating activities among multiple entities. This article explores the challenges and solutions involved in facilitating reliable and ordered message delivery among members of a group spread across different nodes or networks.G 8 min read What is Remote Procedural Call (RPC) Mechanism in Distributed System?A remote Procedure Call (RPC) is a protocol in distributed systems that allows a client to execute functions on a remote server as if they were local. RPC simplifies network communication by abstracting the complexities, making it easier to develop and integrate distributed applications efficiently. 9 min read Stub Generation in Distributed SystemA stub is a piece of code that translates parameters sent between the client and server during a remote procedure call in distributed computing. An RPC's main purpose is to allow a local computer (client) to call procedures on another computer remotely (server) because the client and server utilize 3 min read Server Management in Distributed SystemEffective server management in distributed systems is crucial for ensuring performance, reliability, and scalability. This article explores strategies and best practices for managing servers across diverse environments, focusing on configuration, monitoring, and maintenance to optimize the operation 12 min read Difference Between RMI and DCOMIn this article, we will see differences between Remote Method Invocation(RMI) and Distributed Component Object Model(DCOM). Before getting into the differences, let us first understand what each of them actually means. RMI applications offer two separate programs, a server, and a client. There are 2 min read Synchronization in Distributed SystemSynchronization in Distributed SystemsSynchronization in distributed systems is crucial for ensuring consistency, coordination, and cooperation among distributed components. It addresses the challenges of maintaining data consistency, managing concurrent processes, and achieving coherent system behavior across different nodes in a netwo 11 min read Logical Clock in Distributed SystemIn distributed systems, ensuring synchronized events across multiple nodes is crucial for consistency and reliability. Enter logical clocks, a fundamental concept that orchestrates event ordering without relying on physical time. By assigning logical timestamps to events, these clocks enable systems 10 min read Event Ordering in Distributed SystemIn this article, we will look at how we can analyze the ordering of events in a distributed system. As we know a distributed system is a collection of processes that are separated in space and which can communicate with each other only by exchanging messages this could be processed on separate compu 4 min read Mutual exclusion in distributed systemMutual exclusion is a concurrency control property which is introduced to prevent race conditions. It is the requirement that a process can not enter its critical section while another concurrent process is currently present or executing in its critical section i.e only one process is allowed to exe 5 min read Berkeley's AlgorithmBerkeley's Algorithm is a clock synchronization technique used in distributed systems. The algorithm assumes that each machine node in the network either doesn't have an accurate time source or doesn't possess a UTC server.Algorithm 1) An individual node is chosen as the master node from a pool node 6 min read Difference between Token based and Non-Token based Algorithms in Distributed SystemA distributed system is a system in which components are situated in distinct places, these distinct places refer to networked computers which can easily communicate and coordinate their tasks by just exchanging asynchronous messages with each other. These components can communicate with each other 3 min read Source & Process ManagementWhat is Task Assignment Approach in Distributed System?A Distributed System is a Network of Machines that can exchange information with each other through Message-passing. It can be very useful as it helps in resource sharing. In this article, we will see the concept of the Task Assignment Approach in Distributed systems. Resource Management:One of the 6 min read Difference Between Load Balancing and Load Sharing in Distributed SystemA distributed system is a computing environment in which different components are dispersed among several computers (or other computing devices) connected to a network. This article clarifies the distinctions between load balancing and load sharing in distributed systems, highlighting their respecti 4 min read Process Migration in Distributed SystemProcess migration in distributed systems involves relocating a process from one node to another within a network. This technique optimizes resource use, balances load, and improves fault tolerance, enhancing overall system performance and reliability.Process Migration in Distributed SystemImportant 9 min read Distributed Database SystemA distributed database is basically a database that is not limited to one system, it is spread over different sites, i.e, on multiple computers or over a network of computers. A distributed database system is located on various sites that don't share physical components. This may be required when a 5 min read Multimedia DatabaseA Multimedia database is a collection of interrelated multimedia data that includes text, graphics (sketches, drawings), images, animations, video, audio etc and have vast amounts of multisource multimedia data. The framework that manages different types of multimedia data which can be stored, deliv 5 min read Mechanism for Building Distributed File SystemBuilding a Distributed File System (DFS) involves intricate mechanisms to manage data across multiple networked nodes. This article explores key strategies for designing scalable, fault-tolerant systems that optimize performance and ensure data integrity in distributed computing environments.Mechani 8 min read Distributed File SystemWhat is DFS (Distributed File System)? A Distributed File System (DFS) is a file system that is distributed on multiple file servers or multiple locations. It allows programs to access or store isolated files as they do with the local ones, allowing programmers to access files from any network or computer. In this article, we will discus 8 min read File Service Architecture in Distributed SystemFile service architecture in distributed systems manages and provides access to files across multiple servers or locations. It ensures efficient storage, retrieval, and sharing of files while maintaining consistency, availability, and reliability. By using techniques like replication, caching, and l 12 min read File Models in Distributed SystemFile Models in Distributed Systems" explores how data organization and access methods impact efficiency across networked nodes. This article examines structured and unstructured models, their performance implications, and the importance of scalability and security in modern distributed architectures 6 min read File Caching in Distributed File SystemsFile caching enhances I/O performance because previously read files are kept in the main memory. Because the files are available locally, the network transfer is zeroed when requests for these files are repeated. Performance improvement of the file system is based on the locality of the file access 12 min read What is Replication in Distributed System?Replication in distributed systems involves creating duplicate copies of data or services across multiple nodes. This redundancy enhances system reliability, availability, and performance by ensuring continuous access to resources despite failures or increased demand.Replication in Distributed Syste 9 min read What is Distributed Shared Memory and its Advantages?Distributed shared memory can be achieved via both software and hardware. Hardware examples include cache coherence circuits and network interface controllers. In contrast, software DSM systems implemented at the library or language level are not transparent and developers usually have to program th 4 min read Consistency Model in Distributed SystemIt might be difficult to guarantee that all data copies in a distributed system stay consistent over several nodes. The guidelines for when and how data updates are displayed throughout the system are established by consistency models. Various approaches, including strict consistency or eventual con 6 min read Distributed AlgorithmDeadlock-Free Packet SwitchingIn computer networks deadlock is the most serious system failure. Deadlocks are situations in which packets are stuck in a loop and can never reach their destination no matter what sequence of moves are performed. Deadlock must be observed and carefully handled to avoid system failure. Most of the n 6 min read Wave and Traversal Algorithm in Distributed SystemAs we know a distributed system is a collection where different processes in order to perform a task communicate with each other. In wave algorithm exchange of messages and decision take place, which depends on the number of messages in each event of a process. As it is important to traverse in a co 10 min read Election algorithm and distributed processingDistributed Algorithm is an algorithm that runs on a distributed system. Distributed system is a collection of independent computers that do not share their memory. Each processor has its own memory and they communicate via communication networks. Communication in networks is implemented in a proces 10 min read Introduction to Common Object Request Broker Architecture (CORBA) - Client-Server Software DevelopmentCommon Object Request Broker Architecture (CORBA) could be a specification of a regular design for middleware. It is a client-server software development model. Using a CORBA implementation, a shopper will transparently invoke a way on a server object, which may air a similar machine or across a net 3 min read Difference Between COM and DCOMCOM (Component Object Model) is a technology that enables software components to communicate within a single computer. It allows different parts of a program to interact and share data efficiently. DCOM (Distributed Component Object Model) extends COM's functionality to operate across multiple compu 6 min read Chandy-Misra-Haas's Distributed Deadlock Detection AlgorithmChandy-Misra-Haas's distributed deadlock detection algorithm is an edge chasing algorithm to detect deadlock in distributed systems. In edge chasing algorithm, a special message called probe is used in deadlock detection. A probe is a triplet (i, j, k) which denotes that process Pi has initiated the 4 min read Advanced Distributed SystemFlat & Nested Distributed TransactionsIntroduction : A transaction is a series of object operations that must be done in an ACID-compliant manner. Atomicity - The transaction is completed entirely or not at all.Consistency - It is a term that refers to the transition from one consistent state to another.Isolation - It is carried out sep 6 min read Transaction Recovery in Distributed SystemIn distributed systems, ensuring the reliable recovery of transactions after failures is crucial. This article explores essential recovery techniques, including checkpointing, logging, and commit protocols, while addressing challenges in maintaining ACID properties and consistency across nodes to en 10 min read Two Phase Commit Protocol (Distributed Transaction Management)Consider we are given with a set of grocery stores where the head of all store wants to query about the available sanitizers inventory at all stores in order to move inventory store to store to make balance over the quantity of sanitizers inventory at all stores. The task is performed by a single tr 5 min read Scheduling and Load Balancing in Distributed SystemIn this article, we will go through the concept of scheduling and load balancing in distributed systems in detail. Scheduling in Distributed Systems:The techniques that are used for scheduling the processes in distributed systems are as follows: Task Assignment Approach: In the Task Assignment Appro 7 min read Distributed System - Types of Distributed DeadlockA Deadlock is a situation where a set of processes are blocked because each process is holding a resource and waiting for another resource occupied by some other process. When this situation arises, it is known as Deadlock. DeadlockA Distributed System is a Network of Machines that can exchange info 4 min read Difference between Uniform Memory Access (UMA) and Non-uniform Memory Access (NUMA)In computer architecture, and especially in Multiprocessors systems, memory access models play a critical role that determines performance, scalability, and generally, efficiency of the system. The two shared-memory models most frequently used are UMA and NUMA. This paper deals with these shared-mem 5 min read Like