Difference between ArrayList, LinkedList and Vector
Last Updated :
10 Nov, 2023
ArrayList:
Array List is an implemented class of List interface which is present in package java.util. Array List is created on the basis of the growable or resizable array. And Array List is an index-based data structure. In ArrayList, the element is stored in a contiguous location. It can store different data types. And random access is allowed. We can also store the duplicate element in Array List. It can store any number of null values.
Below is the implementation of ArrayList:
C++
#include <iostream>
#include <vector>
using namespace std;
int main()
{
// Creating a vector of int type
vector<int> vec;
// Appending new elements
// at the end of the vector
// using push_back() method via for loops
for (int i = 1; i <= 5; i++)
vec.push_back(i);
// Printing the vector
for (int i = 0; i < vec.size(); i++)
cout << vec[i] << " ";
cout << endl;
// Removing an element at index 3
// from the vector
// using erase() method
vec.erase(vec.begin() + 3);
// Printing the vector after
// removing the element
for (int i = 0; i < vec.size(); i++)
cout << vec[i] << " ";
cout << endl;
return 0;
}
// This code is contributed by Akash Jha
Java
// Java program to Illustrate working of an ArrayList
// Importing required classes
import java.io.*;
import java.util.*;
// Main class
class GFG {
// Main driver method
public static void main(String[] args)
{
// Creating an ArrayList of Integer type
ArrayList<Integer> arrli = new ArrayList<Integer>();
// Appending the new elements
// at the end of the list
// using add () method via for loops
for (int i = 1; i <= 5; i++)
arrli.add(i);
// Printing the ArrayList
System.out.println(arrli);
// Removing an element at index 3
// from the ArrayList
// using remove() method
arrli.remove(3);
// Printing the ArrayList after
// removing the element
System.out.println(arrli);
}
}
Python3
# Creating a list of integers
my_list = []
# Appending new elements to the list using for loop
for i in range(1, 6):
my_list.append(i)
# Printing the list
print(my_list)
# Removing an element at index 3 from the list
my_list.pop(3)
# Printing the list after removing the element
print(my_list)
C#
// C# program to Illustrate working of an ArrayList
// Importing required namespaces
using System;
using System.Collections;
// Main class
class GFG {
// Main driver method
static void Main(string[] args)
{
// Creating an ArrayList of integer type
ArrayList arrli = new ArrayList();
// Appending the new elements
// at the end of the list
// using Add() method via for loops
for (int i = 1; i <= 5; i++)
arrli.Add(i);
// Printing the ArrayList
foreach(int i in arrli) Console.Write(i + " ");
Console.WriteLine();
// Removing an element at index 3
// from the ArrayList
// using RemoveAt() method
arrli.RemoveAt(3);
// Printing the ArrayList after
// removing the element
foreach(int i in arrli) Console.Write(i + " ");
Console.WriteLine();
}
}
// This code is contributed by Akash Jha
JavaScript
let vec = [];
// Appending new elements
// at the end of the vector
// using push() method via for loops
for (let i = 1; i <= 5; i++) {
vec.push(i);
}
// Printing the vector
for (let i = 0; i < vec.length; i++) {
console.log(vec[i] + " ");
}
console.log("\n");
// Removing an element at index 3
// from the vector
// using splice() method
vec.splice(3, 1);
// Printing the vector after
// removing the element
for (let i = 0; i < vec.length; i++) {
console.log(vec[i] + " ");
}
console.log("\n");
//This code is contributed by Akash Jha
Output[1, 2, 3, 4, 5]
[1, 2, 3, 5]
Linked List:
Linked list is a linear data structure where data are not stored sequentially inside the computer memory but they are link with each other by the address. The best choice of linked list is deletion and insertion and worst choice is retrieval . In Linked list random access is not allowed . It traverse through iterator.
Below is the implementation of the LinkedList:
C++
#include <iostream>
// LinkedList class definition
class LinkedList {
public:
// Node structure definition within LinkedList class
struct Node {
int data;
Node *next;
// Node constructor
Node(int d) : data(d), next(nullptr) {}
};
// Pointer to head node
Node *head;
// Constructor
LinkedList() : head(nullptr) {}
// Function to print the linked list
void printList() {
// Pointer to traverse the linked list
Node *n = head;
while (n != nullptr) {
// Print the data of the node
std::cout << n->data << " ";
// Move to the next node
n = n->next;
}
}
};
// Main function
int main() {
// Create an instance of the LinkedList class
LinkedList llist;
// Create three nodes with data 1, 2 and 3
llist.head = new LinkedList::Node(1);
LinkedList::Node *second = new LinkedList::Node(2);
LinkedList::Node *third = new LinkedList::Node(3);
// Connect the first node with the second node
llist.head->next = second;
// Connect the second node with the third node
second->next = third;
// Call the printList function to print the linked list
llist.printList();
return 0;
}
Java
import java.util.*;
// LinkedList class definition
class LinkedList {
// Node class definition within LinkedList class
static class Node {
int data;
Node next;
// Node constructor
Node(int d) {
this.data = d;
next = null;
}
}
// Pointer to head node
Node head;
// Constructor
LinkedList() {
head = null;
}
// Function to print the linked list
void printList() {
// Pointer to traverse the linked list
Node n = head;
while (n != null) {
// Print the data of the node
System.out.print(n.data + " ");
// Move to the next node
n = n.next;
}
}
}
// Main class
public class Main {
public static void main(String[] args) {
// Create an instance of the LinkedList class
LinkedList llist = new LinkedList();
// Create three nodes with data 1, 2 and 3
llist.head = new LinkedList.Node(1);
LinkedList.Node second = new LinkedList.Node(2);
LinkedList.Node third = new LinkedList.Node(3);
// Connect the first node with the second node
llist.head.next = second;
// Connect the second node with the third node
second.next = third;
// Call the printList function to print the linked list
llist.printList();
//This code is Contributed by Abhijit Ghosh
}
}
Python3
class LinkedList:
# Node structure definition within LinkedList class
class Node:
def __init__(self, data):
self.data = data
self.next = None
def __init__(self):
# Pointer to head node
self.head = None
def printList(self):
# Pointer to traverse the linked list
n = self.head
while n is not None:
# Print the data of the node
print(n.data, end=' ')
# Move to the next node
n = n.next
if __name__ == '__main__':
# Create an instance of the LinkedList class
llist = LinkedList()
# Create three nodes with data 1, 2 and 3
llist.head = LinkedList.Node(1)
second = LinkedList.Node(2)
third = LinkedList.Node(3)
# Connect the first node with the second node
llist.head.next = second
# Connect the second node with the third node
second.next = third
# Call the printList function to print the linked list
llist.printList()
C#
// C# program to define a LinkedList class
using System;
// LinkedList class definition
class LinkedList {
// Node structure definition within LinkedList class
public class Node {
public int data;
public Node next;
// Node constructor
public Node(int d) {
data = d;
next = null;
}
}
// Pointer to head node
public Node head;
// Constructor
public LinkedList() {
head = null;
}
// Function to print the linked list
public void PrintList() {
// Pointer to traverse the linked list
Node n = head;
while (n != null) {
// Print the data of the node
Console.Write(n.data + " ");
// Move to the next node
n = n.next;
}
}
}
// Main function
class GFG {
static void Main() {
// Create an instance of the LinkedList class
LinkedList llist = new LinkedList();
// Create three nodes with data 1, 2 and 3
llist.head = new LinkedList.Node(1);
LinkedList.Node second = new LinkedList.Node(2);
LinkedList.Node third = new LinkedList.Node(3);
// Connect the first node with the second node
llist.head.next = second;
// Connect the second node with the third node
second.next = third;
// Call the PrintList function to print the linked list
llist.PrintList();
}
}
JavaScript
class Node {
constructor(data) {
this.data = data;
this.next = null;
}
}
class LinkedList {
constructor() {
this.head = null;
}
printList() {
let n = this.head;
while (n != null) {
console.log(n.data + " ");
n = n.next;
}
}
}
let llist = new LinkedList();
llist.head = new Node(1);
let second = new Node(2);
let third = new Node(3);
llist.head.next = second;
second.next = third;
llist.printList();
//This code is contributed by Akash Jha
Vector:
The Vector class implements a growable array of objects. Vectors fall in legacy classes, but now it is fully compatible with collections. It is found in java.util package and implement the List interface
Below is the implementation of the Vector:
C++
#include <iostream>
#include<vector>
using namespace std;
int main()
{
// Size of the Vector
int n = 5;
// Declaring the Vector with
// initial size n
vector<int> v;
// Appending new elements at
// the end of the vector
for (int i = 1; i <= n; i++)
v.push_back(i);
// Printing elements
for(auto i : v)
cout<<i<<" ";
cout<<endl;
// Remove element at index 3
v.erase(v.begin()+3);
// Displaying the vector
// after deletion
for(auto i : v)
cout<<i<<" ";
cout<<endl;
return 0;
}
Java
// Java Program to Demonstrate Working
// of Vector Via Creating and using it
// Importing required classes
import java.io.*;
import java.util.*;
// Main class
class GFG {
// Main driver method
public static void main(String[] args)
{
// Size of the Vector
int n = 5;
// Declaring the Vector with
// initial size n
Vector<Integer> v = new Vector<Integer>(n);
// Appending new elements at
// the end of the vector
for (int i = 1; i <= n; i++)
v.add(i);
// Printing elements
System.out.println(v);
// Remove element at index 3
v.remove(3);
// Displaying the vector
// after deletion
System.out.println(v);
// iterating over vector elements
// using for loop
for (int i = 0; i < v.size(); i++)
// Printing elements one by one
System.out.print(v.get(i) + " ");
}
}
Python3
# Size of the List
n = 5
# Declaring the List with initial size n
v = []
# Appending new elements at the end of the list
for i in range(1, n + 1):
v.append(i)
# Printing elements
print(v)
# Remove element at index 3
v.pop(3)
# Displaying the list after deletion
print(v)
# Iterating over list elements using a for loop
for i in range(len(v)):
# Printing elements one by one
print(v[i], end=" ")
C#
using System;
using System.Collections.Generic;
namespace ConsoleApp {
class Program {
static void Main(string[] args)
{
// Size of the List
int n = 5;
// Declaring the List with
// initial size n
List<int> lst = new List<int>();
// Appending new elements at
// the end of the List
for (int i = 1; i <= n; i++)
lst.Add(i);
// Printing elements
foreach(var i in lst) Console.Write(i + " ");
Console.WriteLine();
// Remove element at index 3
lst.RemoveAt(3);
// Displaying the List
// after deletion
foreach(var i in lst) Console.Write(i + " ");
Console.WriteLine();
Console.ReadKey();
}
}
}
//This code is contributed by Akash Jha
JavaScript
// Size of the Array
let n = 5;
// Declaring the Array with initial size n
let v = [];
// Appending new elements at the end of the Array
for (let i = 1; i <= n; i++)
v.push(i);
// Printing elements
console.log(v.join(" "));
// Remove element at index 3
v.splice(3, 1);
// Displaying the Array after deletion
console.log(v.join(" "));
Output[1, 2, 3, 4, 5]
[1, 2, 3, 5]
1 2 3 5
Difference between Array List, Linked List, and Vector:
|
Not present | Not present | present |
Allowed | Not Allowed | Allowed |
contiguous | Not contiguous | contiguous |
supports | supports | supports |
Dynamic Array | Doubly Linked List | Dynamic Array |
Yes | Yes | Yes |
Insertion and deletion are slow | Insertion and deletion are fast | Insertion and deletion are slow |
Which one is better among Linked list, Array list, or Vector?
It depends on the specific use case, each of these data structures has its own advantages and trade-offs. If you mostly need to insert and delete elements at the start or middle of the container, then a linked list might be a better option. If you need fast random access and are willing to accept slower insertion and deletion at end positions, an Array List or Vector is a better option.
Similar Reads
Difference between List and ArrayList in Java
A Collection is a group of individual objects represented as a single unit. Java provides a Collection Framework which defines several classes and interfaces to represent a group of objects as a single unit This framework consists of the List Interface as well as the ArrayList class. In this article
4 min read
Difference Between Vector and List
Vector: Vector is a type of dynamic array which has the ability to resize automatically after insertion or deletion of elements. The elements in vector are placed in contiguous storage so that they can be accessed and traversed using iterators. Element is inserted at the end of the vector. Example:
2 min read
What is the difference between lists and arrays?
In programming, lists and arrays are data structures used to organize and store data. Both have their unique features and purposes. Lists are dynamic and flexible, allowing for easy resizing during runtime, while arrays are static with a fixed size. This difference impacts memory usage and performan
8 min read
Difference between Stack and Array
Stack: A stack is a linear data structure in which elements can be inserted and deleted only from one side of the list, called the top. A stack follows the LIFO (Last In First Out) principle, i.e., the element inserted at the last is the first element to come out. The insertion of an element into a
3 min read
Difference between ArrayList and HashSet in Java
Here are couple of differences between ArrayList and HashSet. Inheritance: Implementation: Implementation : ArrayList implements List interface while HashSet implements Set interface in Java.Internal implementation: ArrayList is backed by an Array while HashSet is backed by an HashMap.Duplicates : A
3 min read
Difference between Heaps and Sorted Array
1. Heap:A heap is a tree based data structure in which tree should be almost complete. It is of two types i.e. max and min heap. Max heap: In max heap, if p is the parent and c is its child, then for every parent p the value of it is greater than or equal to the value of cMin heap In min heap, if p
4 min read
Difference between Array and String in Java
An array is a collection of similar type of elements that are stored in a contiguous memory location. Arrays can contain primitives(int, char, etc) as well as object(non-primitives) references of a class depending upon the definition of the array. In the case of primitive data type, the actual value
5 min read
Difference between Array, Queue and Stack
Array: An Array is a collection of items stored at contiguous memory locations. The idea is to store multiple items of the same type together. This makes it easier to calculate the position of each element by simply adding an offset to a base value, i.e., the memory location of the first element of
3 min read
Difference Between List and Set in Java
The List interface allows storing the ordered collection. It is a child interface of Collection. It is an ordered collection of objects in which duplicate values are allowed to store. List preserves the insertion order, it allows positional access and insertion of elements. Declaration: public abstr
2 min read
Difference between Array and Map
Array:An array is a collection of items stored at contiguous memory locations. The idea is to store multiple items of the same type together. This makes it easier to calculate the position of each element by simply adding an offset to a base value, i.e., the memory location of the first element of t
12 min read