Distributed Database System
Last Updated :
02 Aug, 2025
A Distributed Database System (DDBS) is a collection of multiple databases spread across different physical locations, connected via a network. Unlike a centralized system, where all data is stored in one place, a distributed system manages data across various sites while making it appear as a single database to users. It improves data availability, reliability, and performance by enabling local access, parallel processing, and fault tolerance.
Distributed DatabaseTypes
Some of the type of distributed database system are:
1. Homogeneous Database:
In a homogeneous database, all different sites store database identically. The operating system, database management system, and the data structures used all are the same at all sites. Hence, they're easy to manage.
Features:
- Unified query language and interface.
- Low integration complexity.
- Efficient synchronization.
Example: A bank with branches in different cities uses Oracle DB at every location. All databases have the same structure and are synchronized regularly.
2. Heterogeneous Database
In a heterogeneous distributed database, different sites may use different DBMSs, schemas, or data models, making query processing and transactions difficult. Some sites may not even be aware of others, so translation mechanisms are needed for communication.
Features:
- Supports interoperability between diverse systems.
- Complex query optimization and transaction management.
- Useful in mergers or collaborations between organizations.
Example: A logistics company uses MySQL for inventory, MongoDB for vehicle tracking, and PostgreSQL for billing. Integration middleware allows unified querying across these platforms.
3. Client-Server Distributed Database System
In this model, the server stores and manages the database, while clients send queries over the network. It offers centralized control with distributed access, making it ideal for enterprise systems and web applications. Clients can be lightweight while the server handles heavy processing. Example: Web application interacting with a central PostgreSQL server.
Features:
- Simplifies resource management.
- Central servers can be optimized for performance.
- Easily scalable with more clients.
Example: An e-commerce website where the frontend (client) is hosted separately and interacts with a central PostgreSQL server to manage orders, users, and inventory.
4. Peer-to-Peer Distributed Database System
Here, all nodes are equal, with no fixed client or server roles. Each node can store data and also process queries, leading to decentralized control. It supports fault tolerance and high availability. Example: Blockchain networks like Ethereum, where each node maintains a part of the distributed ledger.
Features:
- No single point of failure.
- Useful in decentralized and distributed apps.
- High availability and data redundancy.
Example: Blockchain-based databases like Ethereum or BitTorrent-based systems, where each peer maintains part of the ledger and participates equally in transactions.
These systems are deployed on cloud platforms and span multiple geographic regions for scalability and reliability. They abstract infrastructure details and are offered as DBaaS, making them ideal for dynamic workloads. Example: Google Cloud Spanner and Amazon DynamoDB used for global applications.
Features:
- Automatic scaling and replication.
- Pay-as-you-use pricing.
- Global availability and disaster recovery.
Example:
- Google Cloud Spanner: Global-scale relational database.
- Amazon DynamoDB: Key-value and document database with high performance.
- Azure Cosmos DB: Multi-model, globally distributed DBMS.
key components and challenges of a Distributed Database
Now lets view definition of each key concept:
1. Replication
In replication, copies of the same data are stored at two or more sites. If every site has the full database, it's called full replication. This improves data availability and allows faster, parallel query processing. However, updates must be made at all sites, or data may become inconsistent. It also adds overhead and makes concurrency control more complex.
2. Fragmentation
In this approach, the relations are fragmented (i.e., they're divided into smaller parts) and each of the fragments is stored in different sites where they're required. It must be made sure that the fragments are such that they can be used to reconstruct the original relation (i.e, there isn't any loss of data).
Fragmentation is advantageous as it doesn't create copies of data, consistency is not a problem.
Fragmentation of relations can be done in two ways:
- Horizontal fragmentation - Splitting by rows
The relation is fragmented into groups of tuples so that each tuple is assigned to at least one fragment. - Vertical fragmentation - Splitting by columns
The schema of the relation is divided into smaller schemas. Each fragment must contain a common candidate key so as to ensure a lossless join.
In certain cases, an approach that is hybrid of fragmentation and replication is used.
3. Concurrency Control
Concurrency control ensures data remains accurate when multiple transactions run at the same time. Without it, issues like lost updates or dirty reads can occur. Its goal is to make parallel transactions behave as if run one by one. Common methods include locking, timestamps, and optimistic concurrency.
4.Semantic Heterogeneity
Semantic heterogeneity happens when different databases use the same data labels but with different meanings, formats, or units. For example, one system may store salary in dollars, another in rupees. This can cause confusion during data integration, so resolving it is important for accurate results.
Applications of Distributed Database:
- It is used in Corporate Management Information System.
- It is used in multimedia applications.
- Used in Military's control system, Hotel chains etc.
- It is also used in manufacturing control system.
Advantages of Distributed Database System :
- There is fast data processing as several sites participate in request processing.
- Reliability and availability of this system is high.
- It possess reduced operating cost.
- It is easier to expand the system by adding more sites.
- It has improved sharing ability and local autonomy.
Disadvantages of Distributed Database System :
- The system becomes complex to manage and control.
- The security issues must be carefully managed.
- The security issues must be carefully managed.
- The system require deadlock handling during the transaction processing otherwise
- The entire system may be in inconsistent state.
- There is need of some standardization for processing of distributed database
system.
Similar Reads
DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Introduction of DBMS (Database Management System)DBMS is a software system that manages, stores, and retrieves data efficiently in a structured format.It allows users to create, update, and query databases efficiently.Ensures data integrity, consistency, and security across multiple users and applications.Reduces data redundancy and inconsistency
6 min read
History of DBMSThe first database management systems (DBMS) were created to handle complex data for businesses in the 1960s. These systems included Charles Bachman's Integrated Data Store (IDS) and IBM's Information Management System (IMS). Databases were first organized into tree-like structures using hierarchica
7 min read
DBMS Architecture 1-level, 2-Level, 3-LevelA DBMS architecture defines how users interact with the database to read, write, or update information. A well-designed architecture and schema (a blueprint detailing tables, fields and relationships) ensure data consistency, improve performance and keep data secure.Types of DBMS Architecture There
6 min read
Difference between File System and DBMSA file system and a DBMS are two kinds of data management systems that are used in different capacities and possess different characteristics. A File System is a way of organizing files into groups and folders and then storing them in a storage device. It provides the media that stores data as well
6 min read
Entity Relationship Model
Introduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri
10 min read
Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to h
4 min read
Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Keys in Relational ModelIn the context of a relational database, keys are one of the basic requirements of a relational database model. Keys are fundamental components that ensure data integrity, uniqueness and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set u
6 min read
Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine or build on them. What is Schema Design?Sch
6 min read
Relational Model
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Relational Algebra
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Functional Dependencies & Normalization
Attribute Closure in DBMSFunctional dependency and attribute closure are essential for maintaining data integrity and building effective, organized and normalized databases. Attribute closure of an attribute set can be defined as set of attributes which can be functionally determined from it.How to find attribute closure of
4 min read
Armstrong's Axioms in Functional Dependency in DBMSArmstrong's Axioms refer to a set of inference rules, introduced by William W. Armstrong, that are used to test the logical implication of functional dependencies. Given a set of functional dependencies F, the closure of F (denoted as F+) is the set of all functional dependencies logically implied b
4 min read
Canonical Cover of Functional Dependencies in DBMSManaging a large set of functional dependencies can result in unnecessary computational overhead. This is where the canonical cover becomes useful. A canonical cover is a set of functional dependencies that is equivalent to a given set of functional dependencies but is minimal in terms of the number
7 min read
Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
7 min read
The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in DatabasesDenormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean 'reversing normalization' or 'not to normalize'. It is an optimization technique that is ap
4 min read
Transactions & Concurrency Control
ACID Properties in DBMSTransactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability even in case of failures / errors. This is where t
5 min read
Types of Schedules in DBMSScheduling is the process of determining the order in which transactions are executed. When multiple transactions run concurrently, scheduling ensures that operations are executed in a way that prevents conflicts or overlaps between them.There are several types of schedules, all of them are depicted
6 min read
Recoverability in DBMSRecoverability ensures that after a failure, the database can restore a consistent state by keeping committed changes and undoing uncommitted ones. It uses logs to redo or undo actions, preventing data loss and maintaining integrity.There are several levels of recoverability that can be supported by
5 min read
Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Deadlock in DBMSA deadlock occurs in a multi-user database environment when two or more transactions block each other indefinitely by each holding a resource the other needs. This results in a cycle of dependencies (circular wait) where no transaction can proceed.For Example: Consider the image belowDeadlock in DBM
4 min read
Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Advanced DBMS
Indexing in DatabasesIndexing in DBMS is used to speed up data retrieval by minimizing disk scans. Instead of searching through all rows, the DBMS uses index structures to quickly locate data using key values.When an index is created, it stores sorted key values and pointers to actual data rows. This reduces the number
6 min read
Introduction of B TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Introduction of B+ TreeA B+ Tree is an advanced data structure used in database systems and file systems to maintain sorted data for fast retrieval, especially from disk. It is an extended version of the B Tree, where all actual data is stored only in the leaf nodes, while internal nodes contain only keys for navigation.C
5 min read
Bitmap Indexing in DBMSBitmap Indexing is a powerful data indexing technique used in Database Management Systems (DBMS) to speed up queries- especially those involving large datasets and columns with only a few unique values (called low-cardinality columns).In a database table, some columns only contain a few different va
3 min read
Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read
File Organization in DBMSFile organization in DBMS refers to the method of storing data records in a file so they can be accessed efficiently. It determines how data is arranged, stored, and retrieved from physical storage.The Objective of File OrganizationIt helps in the faster selection of records i.e. it makes the proces
5 min read
DBMS Practice