Dynamic Convex hull | Adding Points to an Existing Convex Hull
Last Updated :
23 Jul, 2025
Given a convex hull, we need to add a given number of points to the convex hull and print the convex hull after every point addition. The points should be in anti-clockwise order after addition of every point.
Examples:
Input :
Convex Hull : (0, 0), (3, -1), (4, 5), (-1, 4)
Point to add : (100, 100)
Output :
New convex hull : (-1, 4) (0, 0) (3, -1) (100, 100)
We first check whether the point is inside the given convex hull or not. If it is, then nothing has to be done we directly return the given convex hull. If the point is outside the convex hull, we find the lower and upper tangents, and then merge the point with the given convex hull to find the new convex hull, as shown in the figure.

The red outline shows the new convex hull after merging the point and the given convex hull.
To find the upper tangent, we first choose a point on the hull that is nearest to the given point. Then while the line joining the point on the convex hull and the given point crosses the convex hull, we move anti-clockwise till we get the tangent line.

The figure shows the moving of the point on the convex hull for finding the upper tangent.
Note: It is assumed here that the input of the initial convex hull is in the anti-clockwise order, otherwise we have to first sort them in anti-clockwise order then apply the following code.
Code:
CPP
// C++ program to add given a point p to a given
// convex hull. The program assumes that the
// point of given convex hull are in anti-clockwise
// order.
#include<bits/stdc++.h>
using namespace std;
// checks whether the point crosses the convex hull
// or not
int orientation(pair<int, int> a, pair<int, int> b,
pair<int, int> c)
{
int res = (b.second-a.second)*(c.first-b.first) -
(c.second-b.second)*(b.first-a.first);
if (res == 0)
return 0;
if (res > 0)
return 1;
return -1;
}
// Returns the square of distance between two input points
int sqDist(pair<int, int> p1, pair<int, int> p2)
{
return (p1.first-p2.first)*(p1.first-p2.first) +
(p1.second-p2.second)*(p1.second-p2.second);
}
// Checks whether the point is inside the convex hull or not
bool inside(vector<pair<int, int>> a, pair<int, int> p)
{
// Initialize the centroid of the convex hull
pair<int, int> mid = {0, 0};
int n = a.size();
// Multiplying with n to avoid floating point
// arithmetic.
p.first *= n;
p.second *= n;
for (int i=0; i<n; i++)
{
mid.first += a[i].first;
mid.second += a[i].second;
a[i].first *= n;
a[i].second *= n;
}
// if the mid and the given point lies always
// on the same side w.r.t every edge of the
// convex hull, then the point lies inside
// the convex hull
for (int i=0, j; i<n; i++)
{
j = (i+1)%n;
int x1 = a[i].first, x2 = a[j].first;
int y1 = a[i].second, y2 = a[j].second;
int a1 = y1-y2;
int b1 = x2-x1;
int c1 = x1*y2-y1*x2;
int for_mid = a1*mid.first+b1*mid.second+c1;
int for_p = a1*p.first+b1*p.second+c1;
if (for_mid*for_p < 0)
return false;
}
return true;
}
// Adds a point p to given convex hull a[]
void addPoint(vector<pair<int, int>> &a, pair<int, int> p)
{
// If point is inside p
if (inside(a, p))
return;
// point having minimum distance from the point p
int ind = 0;
int n = a.size();
for (int i=1; i<n; i++)
if (sqDist(p, a[i]) < sqDist(p, a[ind]))
ind = i;
// Find the upper tangent
int up = ind;
while (orientation(p, a[up], a[(up+1)%n])>=0)
up = (up + 1) % n;
// Find the lower tangent
int low = ind;
while (orientation(p, a[low], a[(n+low-1)%n])<=0)
low = (n+low - 1) % n;
// Initialize result
vector<pair<int, int>>ret;
// making the final hull by traversing points
// from up to low of given convex hull.
int curr = up;
ret.push_back(a[curr]);
while (curr != low)
{
curr = (curr+1)%n;
ret.push_back(a[curr]);
}
// Modify the original vector
ret.push_back(p);
a.clear();
for (int i=0; i<ret.size(); i++)
a.push_back(ret[i]);
}
// Driver code
int main()
{
// the set of points in the convex hull
vector<pair<int, int> > a;
a.push_back({0, 0});
a.push_back({3, -1});
a.push_back({4, 5});
a.push_back({-1, 4});
int n = a.size();
pair<int, int> p = {100, 100};
addPoint(a, p);
// Print the modified Convex Hull
for (auto e : a)
cout << "(" << e.first << ", "
<< e.second << ") ";
return 0;
}
Java
// Java program to add given a point p to a given
// convex hull. The program assumes that the
// point of given convex hull are in anti-clockwise
// order.
import java.io.*;
import java.util.*;
class GFG
{
// checks whether the point crosses the convex hull
// or not
static int orientation(ArrayList<Integer> a,
ArrayList<Integer> b,
ArrayList<Integer> c)
{
int res = (b.get(1) - a.get(1)) * (c.get(0) - b.get(0)) -
(c.get(1) - b.get(1)) * (b.get(0)-a.get(0));
if (res == 0)
return 0;
if (res > 0)
return 1;
return -1;
}
// Returns the square of distance between two input points
static int sqDist(ArrayList<Integer>p1, ArrayList<Integer>p2)
{
return (p1.get(0) - p2.get(0)) * (p1.get(0) - p2.get(0)) +
(p1.get(1) - p2.get(1)) * (p1.get(1) - p2.get(1));
}
// Checks whether the point is inside the convex hull or not
static boolean inside(ArrayList<ArrayList<Integer>> A,ArrayList<Integer>p)
{
// Initialize the centroid of the convex hull
ArrayList<Integer> mid = new ArrayList<Integer>(Arrays.asList(0,0));
int n = A.size();
for (int i = 0; i < n; i++)
{
mid.set(0,mid.get(0) + A.get(i).get(0));
mid.set(1,mid.get(1) + A.get(i).get(1));
}
// if the mid and the given point lies always
// on the same side w.r.t every edge of the
// convex hull, then the point lies inside
// the convex hull
for (int i = 0, j; i < n; i++)
{
j = (i + 1) % n;
int x1 = A.get(i).get(0)*n, x2 = A.get(j).get(0)*n;
int y1 = A.get(i).get(1)*n, y2 = A.get(j).get(1)*n;
int a1 = y1 - y2;
int b1 = x2 - x1;
int c1 = x1 * y2 - y1 * x2;
int for_mid = a1 * mid.get(0) + b1 * mid.get(1) + c1;
int for_p = a1 * p.get(0) * n + b1 * p.get(1) * n + c1;
if (for_mid*for_p < 0)
return false;
}
return true;
}
// Adds a point p to given convex hull a[]
static void addPoint(ArrayList<ArrayList<Integer>> a,ArrayList<Integer> p)
{
// If point is inside p
if (inside(a, p))
return;
// point having minimum distance from the point p
int ind = 0;
int n = a.size();
for (int i = 1; i < n; i++)
{
if (sqDist(p, a.get(i)) < sqDist(p, a.get(ind)))
{
ind = i;
}
}
// Find the upper tangent
int up = ind;
while (orientation(p, a.get(up), a.get((up+1)%n))>=0)
up = (up + 1) % n;
// Find the lower tangent
int low = ind;
while (orientation(p, a.get(low), a.get((n+low-1)%n))<=0)
low = (n+low - 1) % n;
// Initialize result
ArrayList<ArrayList<Integer>> ret = new ArrayList<ArrayList<Integer>>();
// making the final hull by traversing points
// from up to low of given convex hull.
int curr = up;
ret.add(a.get(curr));
while (curr != low)
{
curr = (curr + 1) % n;
ret.add(a.get(curr));
}
// Modify the original vector
ret.add(p);
a.clear();
for (int i = 0; i < ret.size(); i++)
{
a.add(ret.get(i));
}
}
// Driver code
public static void main (String[] args)
{
// the set of points in the convex hull
ArrayList<ArrayList<Integer>> a = new ArrayList<ArrayList<Integer>>();
a.add(new ArrayList<Integer>(Arrays.asList(0, 0)));
a.add(new ArrayList<Integer>(Arrays.asList(3, -1)));
a.add(new ArrayList<Integer>(Arrays.asList(4, 5)));
a.add(new ArrayList<Integer>(Arrays.asList(-1, 4)));
int n = a.size();
ArrayList<Integer> p = new ArrayList<Integer>(Arrays.asList(100,100));
addPoint(a, p);
// Print the modified Convex Hull
for(ArrayList<Integer> e:a )
{
System.out.print("(" + e.get(0) + ", " + e.get(1) + ") ");
}
}
}
// This code is contributed by rag2127
Python3
# Python 3 program to add given a point p to a given
# convex hull. The program assumes that the
# point of given convex hull are in anti-clockwise
# order.
import copy
# checks whether the point crosses the convex hull
# or not
def orientation(a, b, c):
res = ((b[1] - a[1]) * (c[0] - b[0]) -
(c[1] - b[1]) * (b[0] - a[0]))
if (res == 0):
return 0;
if (res > 0):
return 1;
return -1;
# Returns the square of distance between two input points
def sqDist(p1, p2):
return ((p1[0] - p2[0]) * (p1[0] - p2[0]) +
(p1[1] - p2[1]) * (p1[1] - p2[1]));
# Checks whether the point is inside the convex hull or not
def inside( a, p ):
# Initialize the centroid of the convex hull
mid = [0, 0]
n = len(a)
# Multiplying with n to avoid floating point
# arithmetic.
p[0] *= n;
p[1] *= n;
for i in range(n):
mid[0] += a[i][0];
mid[1] += a[i][1];
a[i][0] *= n;
a[i][1] *= n;
# if the mid and the given point lies always
# on the same side w.r.t every edge of the
# convex hull, then the point lies inside
# the convex hull
for i in range( n ):
j = (i + 1) % n;
x1 = a[i][0]
x2 = a[j][0]
y1 = a[i][1]
y2 = a[j][1]
a1 = y1 - y2;
b1 = x2 - x1;
c1 = x1 * y2 - y1 * x2;
for_mid = a1 * mid[0] + b1 * mid[1] + c1;
for_p = a1 * p[0] + b1*p[1]+c1;
if (for_mid*for_p < 0):
return False;
return True;
# Adds a point p to given convex hull a[]
def addPoint( a, p):
# If point is inside p
arr= copy.deepcopy(a)
prr =p.copy()
if (inside(arr, prr)):
return;
# point having minimum distance from the point p
ind = 0;
n = len(a)
for i in range(1, n):
if (sqDist(p, a[i]) < sqDist(p, a[ind])):
ind = i
# Find the upper tangent
up = ind;
while (orientation(p, a[up], a[(up + 1) % n]) >= 0):
up = (up + 1) % n;
# Find the lower tangent
low = ind;
while (orientation(p, a[low], a[(n + low - 1) % n]) <= 0):
low = (n + low - 1) % n
# Initialize result
ret = []
# making the final hull by traversing points
# from up to low of given convex hull.
curr = up;
ret.append(a[curr]);
while (curr != low):
curr = (curr + 1) % n;
ret.append(a[curr]);
# Modify the original vector
ret.append(p);
a.clear();
for i in range(len(ret)):
a.append(ret[i]);
# Driver code
if __name__ == "__main__":
# the set of points in the convex hull
a = []
a.append([0, 0]);
a.append([3, -1]);
a.append([4, 5]);
a.append([-1, 4]);
n = len(a)
p = [100, 100]
addPoint(a, p);
# Print the modified Convex Hull
for e in a :
print("(" , e[0], ", ",
e[1] , ") ",end=" ")
# This code is contributed by chitranayal
C#
// C# program to add given a point p to a given
// convex hull. The program assumes that the
// point of given convex hull are in anti-clockwise
// order.
using System;
using System.Collections.Generic;
public class GFG{
// checks whether the point crosses the convex hull
// or not
static int orientation(List<int> a,List<int> b,List<int> c)
{
int res=(b[1]-a[1]) * (c[0]-b[0]) - (c[1]-b[1]) * (b[0]-a[0]);
if (res == 0)
return 0;
if (res > 0)
return 1;
return -1;
}
// Returns the square of distance between two input points
static int sqDist(List<int>p1, List<int>p2)
{
return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
(p1[1] - p2[1]) * (p1[1] - p2[1]);
}
// Checks whether the point is inside the convex hull or not
static bool inside(List<List<int>> A,List<int>p)
{
// Initialize the centroid of the convex hull
List<int> mid = new List<int>(){0,0};
int n = A.Count;
for (int i = 0; i < n; i++)
{
mid[0]+=A[i][0];
mid[1]+=A[i][1];
}
// if the mid and the given point lies always
// on the same side w.r.t every edge of the
// convex hull, then the point lies inside
// the convex hull
for (int i = 0, j; i < n; i++)
{
j = (i + 1) % n;
int x1 = A[i][0]*n, x2 = A[j][0]*n;
int y1 = A[i][1]*n, y2 = A[j][1]*n;
int a1 = y1 - y2;
int b1 = x2 - x1;
int c1 = x1 * y2 - y1 * x2;
int for_mid = a1 * mid[0] + b1 * mid[1] + c1;
int for_p = a1 * p[0] * n + b1 * p[1] * n + c1;
if (for_mid*for_p < 0)
return false;
}
return true;
}
// Adds a point p to given convex hull a[]
static void addPoint(List<List<int>> a,List<int> p)
{
// If point is inside p
if (inside(a, p))
return;
// point having minimum distance from the point p
int ind = 0;
int n = a.Count;
for (int i = 1; i < n; i++)
{
if (sqDist(p, a[i]) < sqDist(p, a[ind]))
{
ind = i;
}
}
// Find the upper tangent
int up = ind;
while (orientation(p, a[up], a[(up+1)%n])>=0)
up = (up + 1) % n;
// Find the lower tangent
int low = ind;
while (orientation(p, a[low], a[(n+low-1)%n])<=0)
low = (n+low - 1) % n;
// Initialize result
List<List<int>> ret = new List<List<int>>();
// making the final hull by traversing points
// from up to low of given convex hull.
int curr = up;
ret.Add(a[curr]);
while (curr != low)
{
curr = (curr + 1) % n;
ret.Add(a[curr]);
}
// Modify the original vector
ret.Add(p);
a.Clear();
for (int i = 0; i < ret.Count; i++)
{
a.Add(ret[i]);
}
}
// Driver code
static public void Main (){
// the set of points in the convex hull
List<List<int>> a = new List<List<int>>();
a.Add(new List<int>(){0,0});
a.Add(new List<int>(){3,-1});
a.Add(new List<int>(){4,5});
a.Add(new List<int>(){-1,4});
int n=a.Count;
List<int> p = new List<int>(){100,100};
addPoint(a, p);
// Print the modified Convex Hull
foreach(List<int> e in a)
{
Console.Write("(" + e[0] + ", " + e[1] + ") ");
}
}
}
// This code is contributed by avanitrachhadiya2155
JavaScript
<script>
// Javascript program to add given a point p to a given
// convex hull. The program assumes that the
// point of given convex hull are in anti-clockwise
// order.
// checks whether the point crosses the convex hull
// or not
function orientation(a,b,c)
{
let res = (b[1] - a[1]) * (c[0] - b[0]) -
(c[1] - b[1]) * (b[0]-a[0]);
if (res == 0)
return 0;
if (res > 0)
return 1;
return -1;
}
// Returns the square of distance between two input points
function sqDist(p1,p2)
{
return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
(p1[1] - p2[1]) * (p1[1] - p2[1]);
}
// Checks whether the point is inside the convex hull or not
function inside(A,p)
{
// Initialize the centroid of the convex hull
let mid = [0,0];
let n = A.length;
for (let i = 0; i < n; i++)
{
mid[0]+=A[i][0];
mid[1]+=A[i][1];
}
// if the mid and the given point lies always
// on the same side w.r.t every edge of the
// convex hull, then the point lies inside
// the convex hull
for (let i = 0, j; i < n; i++)
{
j = (i + 1) % n;
let x1 = A[i][0]*n, x2 = A[j][0]*n;
let y1 = A[i][1]*n, y2 = A[j][1]*n;
let a1 = y1 - y2;
let b1 = x2 - x1;
let c1 = x1 * y2 - y1 * x2;
let for_mid = a1 * mid[0] + b1 * mid[1] + c1;
let for_p = a1 * p[0] * n + b1 * p[1] * n + c1;
if (for_mid*for_p < 0)
return false;
}
return true;
}
// Adds a point p to given convex hull a[]
function addPoint(a,p)
{
// If point is inside p
if (inside(a, p))
return;
// point having minimum distance from the point p
let ind = 0;
let n = a.length;
for (let i = 1; i < n; i++)
{
if (sqDist(p, a[i]) < sqDist(p, a[ind]))
{
ind = i;
}
}
// Find the upper tangent
let up = ind;
while (orientation(p, a[up], a[(up+1)%n])>=0)
up = (up + 1) % n;
// Find the lower tangent
let low = ind;
while (orientation(p, a[low], a[(n+low-1)%n])<=0)
low = (n+low - 1) % n;
// Initialize result
let ret = [];
// making the final hull by traversing points
// from up to low of given convex hull.
let curr = up;
ret.push(a[curr]);
while (curr != low)
{
curr = (curr + 1) % n;
ret.push(a[curr]);
}
// Modify the original vector
ret.push(p);
a=[];
for (let i = 0; i < ret.length; i++)
{
a.push(ret[i]);
}
return a;
}
// Driver code
// the set of points in the convex hull
let a = []
a.push([0, 0]);
a.push([3, -1]);
a.push([4, 5]);
a.push([-1, 4]);
let n=a.length;
let p=[100,100];
a=addPoint(a, p);
// Print the modified Convex Hull
for(let e=0;e<a.length;e++ )
{
document.write("(" + a[e][0] + ", " + a[e][1] + ") ");
}
// This code is contributed by ab2127
</script>
Output:
(-1, 4) (0, 0) (3, -1) (100, 100)
Time Complexity:
The time complexity of the above algorithm is O(n*q), where q is the number of points to be added.
Auxiliary Space: O(n), since n extra space has been taken.
This article is contributed by Aarti_Rathi and Amritya Vagmi and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to [email protected].
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem