Find (a^b)%m where 'a' is very large
Last Updated :
11 Sep, 2023
Given three numbers a, b and m where 1<=b,m<=10^6 and 'a' may be very large and contains upto 10^6 digits. The task is to find (a^b)%m.
Examples:
Input : a = 3, b = 2, m = 4
Output : 1
Explanation : (3^2)%4 = 9%4 = 1
Input : a = 987584345091051645734583954832576, b = 3, m = 11
Output: 10
This problem is basically based on modular arithmetic. We can write (a^b) % m as (a%m) * (a%m) * (a%m) * ... (a%m), b times. Below is a algorithm to solve this problem :
- Since 'a' is very large so read 'a' as string.
- Now we try to reduce 'a'. We take modulo of 'a' by m once, i.e; ans = a % m , in this way now ans=a%m lies between integer range 1 to 10^6 i.e; 1 <= a%m <= 10^6.
- Now multiply ans by b-1 times and simultaneously take mod of intermediate multiplication result with m because intermediate multiplication of ans may exceed range of integer and it will produce wrong answer.
C++
// C++ program to find (a^b) mod m for a large 'a'
#include<bits/stdc++.h>
using namespace std;
// utility function to calculate a%m
unsigned int aModM(string s, unsigned int mod)
{
unsigned int number = 0;
for (unsigned int i = 0; i < s.length(); i++)
{
// (s[i]-'0') gives the digit value and form
// the number
number = (number*10 + (s[i] - '0'));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
unsigned int ApowBmodM(string &a, unsigned int b,
unsigned int m)
{
// Find a%m
unsigned int ans = aModM(a, m);
unsigned int mul = ans;
// now multiply ans by b-1 times and take
// mod with m
for (unsigned int i=1; i<b; i++)
ans = (ans*mul) % m;
return ans;
}
// Driver program to run the case
int main()
{
string a = "987584345091051645734583954832576";
unsigned int b=3, m=11;
cout << ApowBmodM(a, b, m);
return 0;
}
Java
// Java program to find (a^b) mod m for a large 'a'
public class GFG {
// utility function to calculate a%m
static int aModM(String s, int mod)
{
int number = 0;
for (int i = 0; i < s.length(); i++)
{
// (s[i]-'0') gives the digit
// value and form the number
number = (number * 10 );
int x = Character.getNumericValue(s.charAt(i));
number = number + x;
number %= mod;
}
return number;
}
// Returns find (a^b) % m
static int ApowBmodM(String a, int b, int m)
{
// Find a%m
int ans = aModM(a, m);
int mul = ans;
// now multiply ans by b-1 times
// and take mod with m
for (int i = 1; i < b; i++)
ans = (ans * mul) % m;
return ans;
}
// Driver code
public static void main(String args[])
{
String a = "987584345091051645734583954832576";
int b = 3, m = 11;
System.out.println(ApowBmodM(a, b, m));
}
}
// This code is contributed by Sam007
Python3
# Python program to find (a^b) mod m for a large 'a'
def aModM(s, mod):
number = 0
# convert string s[i] to integer which gives
# the digit value and form the number
for i in range(len(s)):
number = (number*10 + int(s[i]))
number = number % m
return number
# Returns find (a^b) % m
def ApowBmodM(a, b, m):
# Find a%m
ans = aModM(a, m)
mul = ans
# now multiply ans by b-1 times and take
# mod with m
for i in range(1,b):
ans = (ans*mul) % m
return ans
# Driver program to run the case
a = "987584345091051645734583954832576"
b, m = 3, 11
print (ApowBmodM(a, b, m))
C#
// C# program to find (a^b) mod m
// for a large 'a'
using System;
class GFG {
// utility function to calculate a%m
static int aModM(string s, int mod)
{
int number = 0;
for (int i = 0; i < s.Length; i++)
{
// (s[i]-'0') gives the digit
// value and form the number
number = (number * 10 );
int x = (int)(s[i] - '0');
number = number + x;
number %= mod;
}
return number;
}
// Returns find (a^b) % m
static int ApowBmodM(string a, int b,
int m)
{
// Find a%m
int ans = aModM(a, m);
int mul = ans;
// now multiply ans by b-1 times
// and take mod with m
for (int i = 1; i < b; i++)
ans = (ans * mul) % m;
return ans;
}
// Driver Code
public static void Main()
{
string a = "987584345091051645734583954832576";
int b=3, m=11;
Console.Write(ApowBmodM(a, b, m));
}
}
// This code is contributed by Sam007
PHP
<?php
// PHP program to find (a^b)
// mod m for a large 'a'
// utility function to
// calculate a%m
function aModM($s, $mod)
{
$number = 0;
for ($i = 0; $i < strlen($s); $i++)
{
// (s[i]-'0') gives the digit
// value and form the number
$number = ($number * 10 +
($s[$i] - '0'));
$number %= $mod;
}
return $number;
}
// Returns find (a^b) % m
function ApowBmodM($a, $b,$m)
{
// Find a%m
$ans = aModM($a, $m);
$mul = $ans;
// now multiply ans by
// b-1 times and take
// mod with m
for ($i = 1; $i < $b; $i++)
$ans = ($ans * $mul) % $m;
return $ans;
}
// Driver code
$a = "987584345091051645734583954832576";
$b = 3;
$m = 11;
echo ApowBmodM($a, $b, $m);
return 0;
// This code is contributed by nitin mittal.
?>
JavaScript
<script>
// JavaScript program to find (a^b) mod m
// for a large 'a'
// Utility function to calculate a%m
function aModM(s, mod)
{
let number = 0;
for(let i = 0; i < s.length; i++)
{
// (s[i]-'0') gives the digit
// value and form the number
number = (number * 10 );
let x = (s[i] - '0');
number = number + x;
number %= mod;
}
return number;
}
// Returns find (a^b) % m
function ApowBmodM(a, b, m)
{
// Find a%m
let ans = aModM(a, m);
let mul = ans;
// Now multiply ans by b-1 times
// and take mod with m
for(let i = 1; i < b; i++)
ans = (ans * mul) % m;
return ans;
}
// Driver Code
let a = "987584345091051645734583954832576";
let b = 3, m = 11;
document.write(ApowBmodM(a, b, m));
// This code is contributed by souravghosh0416
</script>
Time Complexity: O(len(a)+b)
Auxiliary Space: O(1)
Efficient Approach: The above multiplications can be reduced to log b by using fast modular exponentiation where we calculate result by the binary representation of exponent (b). If the set bit is 1 we multiply current value of base to result and square the value of base for each recursive call.
Recursive Code:
C++14
// C++ program to find (a^b) mod m for a large 'a', with an
// efficient approach.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// Reduce the number B to a small number
// using Fermat Little
ll MOD(string num, int mod)
{
ll res = 0;
for (int i = 0; i < num.length(); i++)
res = (res * 10 + num[i] - '0') % mod;
return res;
}
ll ModExponent(ll a, ll b, ll m)
{
ll result;
if (a == 0)
return 0;
else if (b == 0)
return 1;
else if (b & 1) {
result = a % m;
result = result * ModExponent(a, b - 1, m);
}
else {
result = ModExponent(a, b / 2, m);
result = ((result * result) % m + m) % m;
}
return (result % m + m) % m;
}
int main()
{
// String input as b is very large
string a = "987584345091051645734583954832576";
// String input as b is very large
ll b = 3;
ll m = 11;
ll remainderA = MOD(a, m);
cout << ModExponent(remainderA, b, m);
return 0;
}
Java
// Java program to find (a^b) mod m for a large 'a', with an
// efficient approach.
public class GFG
{
// Reduce the number B to a small number
// using Fermat Little
static long MOD(String num, long mod)
{
long res = 0;
for (int i = 0; i < num.length(); i++) {
res = (res * 10 + num.charAt(i) - '0') % mod;
}
return res;
}
// Calculate the ModExponent of the given large number
// 'a'
static long ModExponent(long a, long b, long m)
{
long result;
if (a == 0) {
return 0;
}
else if (b == 0) {
return 1;
}
else if (b % 2 != 0) {
result = a % m;
result = result * ModExponent(a, b - 1, m);
}
else {
result = ModExponent(a, b / 2, m);
result = ((result * result) % m + m) % m;
}
return (result % m + m) % m;
}
public static void main(String[] args)
{
// String input as a is very large
String a = "987584345091051645734583954832576";
long b = 3;
long m = 11;
long remainderA = MOD(a, m);
System.out.println(ModExponent(remainderA, b, m));
}
}
// The code is contributed by Gautam goel (gautamgoel962)
Python3
# Python3 program to find (a^b) mod m
# for a large 'a'
# Utility function to calculate a%m
def MOD(s, mod):
res = 0
for i in range(len(s)):
res = (res * 10 + int(s[i])) % mod
return res
# Returns find (a^b) % m
def ModExponent(a, b, m):
if (a == 0):
return 0
elif (b == 0):
return 1
elif (b % 2 != 0):
result = a % m
result = result * ModExponent(a, b - 1, m)
else:
result = ModExponent(a, b / 2, m)
result = ((result * result) % m + m) % m
return (result % m + m) % m
# Driver Code
a = "987584345091051645734583954832576"
b = 3
m = 11
remainderA = MOD(a, m)
print(ModExponent(remainderA, b, m))
# This code is contributed by phasing17
C#
// C# program to find (a^b) mod m for a large 'a', with an
// efficient approach.
using System;
using System.Collections.Generic;
public class GFG {
// Reduce the number B to a small number
// using Fermat Little
static long MOD(string num, long mod)
{
long res = 0;
for (int i = 0; i < num.Length; i++) {
res = (res * 10 + num[i] - '0') % mod;
}
return res;
}
// Calculate the ModExponent of the given large number
// 'a'
static long ModExponent(long a, long b, long m)
{
long result;
if (a == 0) {
return 0;
}
else if (b == 0) {
return 1;
}
else if (b % 2 != 0) {
result = a % m;
result = result * ModExponent(a, b - 1, m);
}
else {
result = ModExponent(a, b / 2, m);
result = ((result * result) % m + m) % m;
}
return (result % m + m) % m;
}
// Driver Code
public static void Main(string[] args)
{
// String input as a is very large
string a = "987584345091051645734583954832576";
long b = 3;
long m = 11;
// Function Call
long remainderA = MOD(a, m);
Console.WriteLine(ModExponent(remainderA, b, m));
}
}
// The code is contributed by phasing17
JavaScript
<script>
// JavaScript program to find (a^b) mod m
// for a large 'a'
// Utility function to calculate a%m
function MOD(s, mod)
{
var res = 0;
for (var i = 0; i < s.length; i++) {
res = (res * 10 + (s[i] - '0')) % mod;
}
return res;
}
// Returns find (a^b) % m
function ModExponent(a, b, m)
{
var result;
if (a == 0) {
return 0;
}
else if (b == 0) {
return 1;
}
else if (b % 2 != 0) {
result = a % m;
result = result * ModExponent(a, b - 1, m);
}
else {
result = ModExponent(a, b / 2, m);
result = ((result * result) % m + m) % m;
}
return (result % m + m) % m;
}
// Driver Code
let a = "987584345091051645734583954832576";
let b = 3, m = 11;
var remainderA = MOD(a, m);
document.write(ModExponent(remainderA, b, m));
// This code is contributed by shinjanpatra.
</script>
Time Complexity: O(len(a)+ log b)
Auxiliary Space: O(log b)
Space Efficient Iterative Code:
C++14
// C++ program to find (a^b) mod m for a large 'a'
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
// utility function to calculate a%m and b%m
ll aModM(string s, ll mod)
{
ll number = 0;
for (ll i = 0; i < s.length(); i++)
{
// (s[i]-'0') gives the digit value and form
// the number
number = (number*10 + (s[i] - '0'));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
ll ApowBmodM(ll x, ll y,ll m)
{
ll res=1;
while(y)
{
if(y&1)
res=(res*x)%m;
y=y>>1;
x=((x*x)%m+m)%m;
}
return (res%m+m)%m;
}
// Driver program to run the case
int main()
{
string a = "987584345091051645734583954832576";
ll b=3;
ll m=11;
// Find a%m
ll x=aModM(a,m);
cout << ApowBmodM(x,b,m);
return 0;
}
Java
// Java program to find (a^b) mod m for a large 'a'
import java.util.*;
class GFG {
// utility function to calculate a%m and b%m
static long aModM(String s, long mod)
{
long number = 0;
for (int i = 0; i < s.length(); i++) {
// (s[i]-'0') gives the digit value and form
// the number
number = (number * 10 + (s.charAt(i) - '0'));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
static long ApowBmodM(long x, long y, long m)
{
long res = 1;
while (y > 0) {
if ((y & 1) != 0)
res = (res * x) % m;
y = y >> 1;
x = ((x * x) % m + m) % m;
}
return (res % m + m) % m;
}
// Driver program to run the case
public static void main(String[] args)
{
String a = "987584345091051645734583954832576";
long b = 3;
long m = 11;
// Find a%m
long x = aModM(a, m);
System.out.println(ApowBmodM(x, b, m));
}
}
// This code is contributed by phasing17
Python3
# Python3 program to find (a^b) mod m for a large 'a'
# utility function to calculate a%m and b%m
def aModM(s, mod):
number = 0;
for i in range(len(s)):
# int(s[i]) gives the digit value and form
# the number
number = (number * 10 + int(s[i]));
number %= mod;
return number;
# Returns find (a^b) % m
def ApowBmodM(x, y, m):
res = 1;
while (y > 0):
if (y & 1):
res = (res * x) % m;
y = y >> 1;
x = ((x * x) % m + m) % m;
return (res % m + m) % m;
# Driver program to run the case
a = "987584345091051645734583954832576";
b = 3;
m = 11;
# Find a%m
x = aModM(a, m);
print(ApowBmodM(x, b, m));
# This code is contributed by phasing17
C#
// C# program to find (a^b) mod m for a large 'a'
using System;
class GFG
{
// utility function to calculate a%m and b%m
static long aModM(string s, long mod)
{
long number = 0;
for (int i = 0; i < s.Length; i++)
{
// (s[i]-'0') gives the digit value and form
// the number
number = (number * 10 + (s[i] - '0'));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
static long ApowBmodM(long x, long y, long m)
{
long res = 1;
while (y > 0) {
if ((y & 1) != 0)
res = (res * x) % m;
y = y >> 1;
x = ((x * x) % m + m) % m;
}
return (res % m + m) % m;
}
// Driver program to run the case
public static void Main(string[] args)
{
string a = "987584345091051645734583954832576";
long b = 3;
long m = 11;
// Find a%m
long x = aModM(a, m);
Console.WriteLine(ApowBmodM(x, b, m));
}
}
// This code is contributed by phasing17
JavaScript
// JavaScript program to find (a^b) mod m for a large 'a'
// utility function to calculate a%m and b%m
function aModM(s, mod)
{
let number = 0;
for (var i = 0; i < s.length; i++) {
// parseInt(s[i]) gives the digit value and form
// the number
number = (number * 10 + parseInt(s[i]));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
function ApowBmodM(x, y, m)
{
let res = 1;
while (y) {
if (y & 1)
res = (res * x) % m;
y = y >> 1;
x = ((x * x) % m + m) % m;
}
return (res % m + m) % m;
}
// Driver program to run the case
let a = "987584345091051645734583954832576";
let b = 3;
let m = 11;
// Find a%m
let x = aModM(a, m);
console.log(ApowBmodM(x, b, m));
// This code is contributed by phasing17
Time Complexity: O(len(a)+ log b)
Auxiliary Space: O(1)
Case: When both 'a' and 'b' are very large.
We can also implement the same approach if both 'a' and 'b' was very large. In that case, we would have first took mod of it with m using our aModM function. Then pass it to the above ApowBmodM recursive or iterative function to get the required result.
Recursive Code:
C++14
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// Reduce the number B to a small number
// using Fermat Little
ll MOD(string num,int mod)
{
ll res=0;
for(int i=0;i<num.length();i++)
res=(res*10+num[i]-'0')%mod;
return res;
}
ll ModExponent(ll a,ll b,ll m)
{
ll result;
if(a==0)
return 0;
else if(b==0)
return 1;
else if(b&1)
{
result=a%m;
result=result*ModExponent(a,b-1,m);
}
else{
result=ModExponent(a,b/2,m);
result=((result%m)*(result%m))%m;
}
return (result%m+m)%m;
}
int main()
{
// String input as b is very large
string a = "987584345091051645734583954832576";
// String input as b is very large
string b = "467687655456765756453454365476765";
ll m = 1000000007;
ll remainderA = MOD(a,m);
ll remainderB = MOD(b,m);
cout << ModExponent(remainderA, remainderB, m);
return 0;
}
Java
/*package whatever //do not write package name here */
import java.io.*;
class GFG {
// Reduce the number B to a small number
// using Fermat Little.
static long MOD(String num,int mod)
{
long res = 0;
for(int i = 0; i < num.length(); i++)
{
res = (res * 10 + num.charAt(i) - '0') % mod;
}
return res;
}
static long ModExponent(long a,long b,long m){
long result = 0;
if(a == 0)
return 0;
else if(b == 0)
return 1;
else if((b&1) == 1){
result = a % m;
result = result*ModExponent(a, b - 1, m);
}
else{
result = ModExponent(a, b/2, m);
result = ((result % m)*(result % m)) % m;
}
return (result % m + m) % m;
}
public static void main (String[] args) {
// String input as b is very large
String a = "987584345091051645734583954832576";
// String input as b is very large
String b = "467687655456765756453454365476765";
int m = 1000000007;
long remainderA = MOD(a,m);
long remainderB = MOD(b,m);
System.out.println(ModExponent(remainderA, remainderB, m));
}
}
// This code is contributed by aadityapburujwale
Python3
# Python3 program to implement the approach
# Reduce the number B to a small number
# using Fermat Little
def MOD(num, mod):
res = 0;
for i in range(len(num)):
res = (res * 10 + int(num[i])) % mod;
return res;
def ModExponent(a, b, m):
if (a == 0):
return 0;
elif (b == 0):
return 1;
elif (b & 1):
result = a % m;
result = result * ModExponent(a, b - 1, m);
else:
b = b // 2
result = ModExponent(a, b, m);
result = ((result % m) * (result % m)) % m;
return (result % m + m) % m;
# String input as b is very large
a = "987584345091051645734583954832576";
# String input as b is very large
b = "467687655456765756453454365476765";
m = 1000000007;
remainderA = (MOD(a, m));
remainderB = (MOD(b, m));
print(ModExponent(remainderA, remainderB, m));
# This code is contributed by phasing17
C#
// C# program to implement the approach
using System;
using System.Collections.Generic;
class GFG {
// Reduce the number B to a small number
// using Fermat Little.
static long MOD(string num, int mod)
{
long res = 0;
for (int i = 0; i < num.Length; i++) {
res = (res * 10 + num[i] - '0') % mod;
}
return res;
}
static long ModExponent(long a, long b, long m)
{
long result = 0;
if (a == 0)
return 0;
else if (b == 0)
return 1;
else if ((b & 1) == 1) {
result = a % m;
result = result * ModExponent(a, b - 1, m);
}
else {
result = ModExponent(a, b / 2, m);
result = ((result % m) * (result % m)) % m;
}
return (result % m + m) % m;
}
public static void Main(string[] args)
{
// String input as b is very large
string a = "987584345091051645734583954832576";
// String input as b is very large
string b = "467687655456765756453454365476765";
int m = 1000000007;
long remainderA = MOD(a, m);
long remainderB = MOD(b, m);
Console.WriteLine(
ModExponent(remainderA, remainderB, m));
}
}
// This code is contributed by phasing17
JavaScript
// JavaScript program to implement the approach
// Reduce the number B to a small number
// using Fermat Little
function MOD(num, mod)
{
let res = 0;
for (var i = 0; i < num.length; i++)
res = (res * 10 + parseInt(num[i])) % mod;
return res;
}
function ModExponent(a, b, m)
{
let result;
if (a == 0n)
return 0n;
else if (b == 0n)
return 1n;
else if (b & 1n) {
result = a % m;
result = result * ModExponent(a, b - 1n, m);
}
else {
b = b / 2n - (b % 2n);
result = ModExponent(a, b, m);
result = ((result % m) * (result % m)) % m;
}
return (result % m + m) % m;
}
// String input as b is very large
let a = "987584345091051645734583954832576";
// String input as b is very large
let b = "467687655456765756453454365476765";
let m = 1000000007;
let remainderA = BigInt(MOD(a, m));
let remainderB = BigInt(MOD(b, m));
console.log(ModExponent(remainderA, remainderB, BigInt(m)));
// This code is contributed by phasing17
Time Complexity: O(len(a)+len(b)+log b)
Auxiliary Space: O(log b)
Space Efficient Iterative Code:
C++14
// C++ program to find (a^b) mod m for a large 'a'
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// utility function to calculate a%m and b%m
ll aModM(string s, ll mod)
{
ll number = 0;
for (ll i = 0; i < s.length(); i++) {
// (s[i]-'0') gives the digit value and form
// the number
number = (number * 10 + (s[i] - '0'));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
ll ApowBmodM(string& a, string& b, ll m)
{
ll res = 1;
// Find a%m
ll x = aModM(a, m);
// Find b%m
ll y = aModM(b, m);
while (y) {
if (y & 1)
res = (res * x) % m;
y = y >> 1;
x = ((x % m) * (x % m)) % m;
}
return (res % m + m) % m;
}
// Driver program to run the case
int main()
{
string a = "987584345091051645734583954832576";
string b = "467687655456765756453454365476765";
ll m = 1000000007;
cout << ApowBmodM(a, b, m);
return 0;
}
Java
/*package whatever //do not write package name here */
import java.io.*;
class GFG {
// utility function to calculate a%m and b%m
static long aModM(String s, long mod){
long number = 0;
for (int i = 0; i < s.length(); i++)
{
// (s.charAt(i)-'0') gives the digit value and form
// the number
number = (number * 10 + (s.charAt(i) - '0'));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
static long ApowBmodM(String a, String b, long m)
{
long res = 1;
// Find a%m
long x = aModM(a, m);
// Find b%m
long y = aModM(b, m);
while (y>0) {
if ((y & 1)==1)
res = (res * x) % m;
y = y >> 1;
x = ((x % m) * (x % m)) % m;
}
return (res % m + m) % m;
}
public static void main (String[] args) {
String a = "987584345091051645734583954832576";
String b = "467687655456765756453454365476765";
long m = 1000000007;
System.out.println(ApowBmodM(a, b, m));
}
}
// This code is contributed by aadityapburujwale
Python3
# Python3 program to find (a^b) mod m for a large 'a'
# utility function to calculate a%m and b%m
def aModM(s, mod):
number = 0
for i in range(len(s)):
# (s[i]-'0') gives the digit value and form
# the number
number = (number * 10 + (int(s[i])))
number %= mod
return number
# Returns find (a^b) % m
def ApowBmodM(a, b, m):
res = 1
# Find a%m
x = aModM(a, m)
# Find b%m
y = aModM(b, m)
while (y > 0):
if (y & 1):
res = (res * x) % m
y = y >> 1
x = ((x % m) * (x % m)) % m
return (res % m + m) % m
# Driver program to run the case
a = "987584345091051645734583954832576"
b = "467687655456765756453454365476765"
m = 1000000007
print(ApowBmodM(a, b, m))
# This code is contributed by phasing17
JavaScript
// JavaScript program to find (a^b) mod m for a large 'a'
// utility function to calculate a%m and b%m
function aModM(s, mod)
{
let number = 0n;
for (let i = 0; i < s.length; i++) {
// (s[i]-'0') gives the digit value and form
// the number
number = (number * 10n + BigInt(parseInt(s[i])));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
function ApowBmodM(a, b, m)
{
let res = 1n;
// Find a%m
let x = BigInt(aModM(a, m));
// Find b%m
let y = BigInt(aModM(b, m));
while (y > 0n) {
if (y & 1n)
res = (res * x) % m;
y = y >> 1n;
x = ((x % m) * (x % m)) % m;
}
return (res % m + m) % m;
}
// Driver program to run the case
let a = "987584345091051645734583954832576";
let b = "467687655456765756453454365476765";
let m = 1000000007n;
console.log(ApowBmodM(a, b, m));
// This code is contributed by phasing17
C#
// C# program to find (a^b) mod m for a large 'a'
using System;
using System.Collections.Generic;
class GFG {
// utility function to calculate a%m and b%m
static long aModM(string s, long mod)
{
long number = 0;
for (int i = 0; i < s.Length; i++) {
// (s[i]-'0') gives the digit value and form
// the number
number = (number * 10 + (s[i] - '0'));
number %= mod;
}
return number;
}
// Returns find (a^b) % m
static long ApowBmodM(string a, string b, long m)
{
long res = 1;
// Find a%m
long x = aModM(a, m);
// Find b%m
long y = aModM(b, m);
while (y != 0) {
if ((y & 1) != 0)
res = (res * x) % m;
y = y >> 1;
x = ((x % m) * (x % m)) % m;
}
return (res % m + m) % m;
}
// Driver program to run the case
public static void Main(string[] args)
{
string a = "987584345091051645734583954832576";
string b = "467687655456765756453454365476765";
long m = 1000000007;
Console.WriteLine(ApowBmodM(a, b, m));
}
}
// This code is contributed by phasing17
Time Complexity: O(len(a)+len(b)+ log b)
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to [email protected].
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem