Find Square Root under Modulo p | Set 2 (Shanks Tonelli algorithm)
Last Updated :
23 Jul, 2025
Given a number ‘n’ and a prime ‘p’, find square root of n under modulo p if it exists.
Examples:
Input: n = 2, p = 113
Output: 62
62^2 = 3844 and 3844 % 113 = 2
Input: n = 2, p = 7
Output: 3 or 4
3 and 4 both are square roots of 2 under modulo
7 because (3*3) % 7 = 2 and (4*4) % 7 = 2
Input: n = 2, p = 5
Output: Square root doesn't exist
We have discussed Euler’s criterion to check if square root exists or not. We have also discussed a solution that works only when p is in form of 4*i + 3
In this post, Shank Tonelli’s algorithm is discussed that works for all types of inputs.
Algorithm steps to find modular square root using shank Tonelli’s algorithm :
1) Calculate n ^ ((p - 1) / 2) (mod p), it must be 1 or p-1, if it is p-1, then modular square root is not possible.
2) Then after write p-1 as (s * 2^e) for some integer s and e, where s must be an odd number and both s and e should be positive.
3) Then find a number q such that q ^ ((p - 1) / 2) (mod p) = -1
4) Initialize variable x, b, g and r by following values
x = n ^ ((s + 1) / 2 (first guess of square root)
b = n ^ s
g = q ^ s
r = e (exponent e will decrease after each updation)
5) Now loop until m > 0 and update value of x, which will be our final answer.
Find least integer m such that b^(2^m) = 1(mod p) and 0 <= m <= r – 1
If m = 0, then we found correct answer and return x as result
Else update x, b, g, r as below
x = x * g ^ (2 ^ (r – m - 1))
b = b * g ^(2 ^ (r - m))
g = g ^ (2 ^ (r - m))
r = m
so if m becomes 0 or b becomes 1, we terminate and print the result. This loop guarantees to terminate because value of m is decreased each time after updation.
Following is the implementation of above algorithm.
C++
// C++ program to implement Shanks Tonelli algorithm for
// finding Modular Square Roots
#include <bits/stdc++.h>
using namespace std;
// utility function to find pow(base, exponent) % modulus
int pow(int base, int exponent, int modulus)
{
int result = 1;
base = base % modulus;
while (exponent > 0)
{
if (exponent % 2 == 1)
result = (result * base)% modulus;
exponent = exponent >> 1;
base = (base * base) % modulus;
}
return result;
}
// utility function to find gcd
int gcd(int a, int b)
{
if (b == 0)
return a;
else
return gcd(b, a % b);
}
// Returns k such that b^k = 1 (mod p)
int order(int p, int b)
{
if (gcd(p, b) != 1)
{
printf("p and b are not co-prime.\n");
return -1;
}
// Initializing k with first odd prime number
int k = 3;
while (1)
{
if (pow(b, k, p) == 1)
return k;
k++;
}
}
// function return p - 1 (= x argument) as x * 2^e,
// where x will be odd sending e as reference because
// updation is needed in actual e
int convertx2e(int x, int& e)
{
e = 0;
while (x % 2 == 0)
{
x /= 2;
e++;
}
return x;
}
// Main function for finding the modular square root
int STonelli(int n, int p)
{
// a and p should be coprime for finding the modular
// square root
if (gcd(n, p) != 1)
{
printf("a and p are not coprime\n");
return -1;
}
// If below expression return (p - 1) then modular
// square root is not possible
if (pow(n, (p - 1) / 2, p) == (p - 1))
{
printf("no sqrt possible\n");
return -1;
}
// expressing p - 1, in terms of s * 2^e, where s
// is odd number
int s, e;
s = convertx2e(p - 1, e);
// finding smallest q such that q ^ ((p - 1) / 2)
// (mod p) = p - 1
int q;
for (q = 2; ; q++)
{
// q - 1 is in place of (-1 % p)
if (pow(q, (p - 1) / 2, p) == (p - 1))
break;
}
// Initializing variable x, b and g
int x = pow(n, (s + 1) / 2, p);
int b = pow(n, s, p);
int g = pow(q, s, p);
int r = e;
// keep looping until b become 1 or m becomes 0
while (1)
{
int m;
for (m = 0; m < r; m++)
{
if (order(p, b) == -1)
return -1;
// finding m such that b^ (2^m) = 1
if (order(p, b) == pow(2, m))
break;
}
if (m == 0)
return x;
// updating value of x, g and b according to
// algorithm
x = (x * pow(g, pow(2, r - m - 1), p)) % p;
g = pow(g, pow(2, r - m), p);
b = (b * g) % p;
if (b == 1)
return x;
r = m;
}
}
// driver program to test above function
int main()
{
int n = 2;
// p should be prime
int p = 113;
int x = STonelli(n, p);
if (x == -1)
printf("Modular square root is not exist\n");
else
printf("Modular square root of %d and %d is %d\n",
n, p, x);
}
Java
// Java program to implement Shanks
// Tonelli algorithm for finding
// Modular Square Roots
import java.util.*;
class GFG
{
static int z = 0;
// utility function to find
// pow(base, exponent) % modulus
static int pow1(int base1,
int exponent, int modulus)
{
int result = 1;
base1 = base1 % modulus;
while (exponent > 0)
{
if (exponent % 2 == 1)
result = (result * base1) % modulus;
exponent = exponent >> 1;
base1 = (base1 * base1) % modulus;
}
return result;
}
// utility function to find gcd
static int gcd(int a, int b)
{
if (b == 0)
return a;
else
return gcd(b, a % b);
}
// Returns k such that b^k = 1 (mod p)
static int order(int p, int b)
{
if (gcd(p, b) != 1)
{
System.out.println("p and b are" +
"not co-prime.");
return -1;
}
// Initializing k with first
// odd prime number
int k = 3;
while (true)
{
if (pow1(b, k, p) == 1)
return k;
k++;
}
}
// function return p - 1 (= x argument)
// as x * 2^e, where x will be odd
// sending e as reference because
// updation is needed in actual e
static int convertx2e(int x)
{
z = 0;
while (x % 2 == 0)
{
x /= 2;
z++;
}
return x;
}
// Main function for finding
// the modular square root
static int STonelli(int n, int p)
{
// a and p should be coprime for
// finding the modular square root
if (gcd(n, p) != 1)
{
System.out.println("a and p are not coprime");
return -1;
}
// If below expression return (p - 1) then modular
// square root is not possible
if (pow1(n, (p - 1) / 2, p) == (p - 1))
{
System.out.println("no sqrt possible");
return -1;
}
// expressing p - 1, in terms of
// s * 2^e, where s is odd number
int s, e;
s = convertx2e(p - 1);
e = z;
// finding smallest q such that q ^ ((p - 1) / 2)
// (mod p) = p - 1
int q;
for (q = 2; ; q++)
{
// q - 1 is in place of (-1 % p)
if (pow1(q, (p - 1) / 2, p) == (p - 1))
break;
}
// Initializing variable x, b and g
int x = pow1(n, (s + 1) / 2, p);
int b = pow1(n, s, p);
int g = pow1(q, s, p);
int r = e;
// keep looping until b
// become 1 or m becomes 0
while (true)
{
int m;
for (m = 0; m < r; m++)
{
if (order(p, b) == -1)
return -1;
// finding m such that b^ (2^m) = 1
if (order(p, b) == Math.pow(2, m))
break;
}
if (m == 0)
return x;
// updating value of x, g and b
// according to algorithm
x = (x * pow1(g, (int)Math.pow(2,
r - m - 1), p)) % p;
g = pow1(g, (int)Math.pow(2, r - m), p);
b = (b * g) % p;
if (b == 1)
return x;
r = m;
}
}
// Driver code
public static void main (String[] args)
{
int n = 2;
// p should be prime
int p = 113;
int x = STonelli(n, p);
if (x == -1)
System.out.println("Modular square" +
"root is not exist\n");
else
System.out.println("Modular square root of " +
n + " and " + p + " is " +
x + "\n");
}
}
// This code is contributed by mits
Python3
# Python3 program to implement Shanks Tonelli
# algorithm for finding Modular Square Roots
# utility function to find pow(base,
# exponent) % modulus
def pow1(base, exponent, modulus):
result = 1;
base = base % modulus;
while (exponent > 0):
if (exponent % 2 == 1):
result = (result * base) % modulus;
exponent = int(exponent) >> 1;
base = (base * base) % modulus;
return result;
# utility function to find gcd
def gcd(a, b):
if (b == 0):
return a;
else:
return gcd(b, a % b);
# Returns k such that b^k = 1 (mod p)
def order(p, b):
if (gcd(p, b) != 1):
print("p and b are not co-prime.\n");
return -1;
# Initializing k with first
# odd prime number
k = 3;
while (True):
if (pow1(b, k, p) == 1):
return k;
k += 1;
# function return p - 1 (= x argument) as
# x * 2^e, where x will be odd sending e
# as reference because updation is needed
# in actual e
def convertx2e(x):
z = 0;
while (x % 2 == 0):
x = x / 2;
z += 1;
return [x, z];
# Main function for finding the
# modular square root
def STonelli(n, p):
# a and p should be coprime for
# finding the modular square root
if (gcd(n, p) != 1):
print("a and p are not coprime\n");
return -1;
# If below expression return (p - 1) then
# modular square root is not possible
if (pow1(n, (p - 1) / 2, p) == (p - 1)):
print("no sqrt possible\n");
return -1;
# expressing p - 1, in terms of s * 2^e,
# where s is odd number
ar = convertx2e(p - 1);
s = ar[0];
e = ar[1];
# finding smallest q such that
# q ^ ((p - 1) / 2) (mod p) = p - 1
q = 2;
while (True):
# q - 1 is in place of (-1 % p)
if (pow1(q, (p - 1) / 2, p) == (p - 1)):
break;
q += 1;
# Initializing variable x, b and g
x = pow1(n, (s + 1) / 2, p);
b = pow1(n, s, p);
g = pow1(q, s, p);
r = e;
# keep looping until b become
# 1 or m becomes 0
while (True):
m = 0;
while (m < r):
if (order(p, b) == -1):
return -1;
# finding m such that b^ (2^m) = 1
if (order(p, b) == pow(2, m)):
break;
m += 1;
if (m == 0):
return x;
# updating value of x, g and b
# according to algorithm
x = (x * pow1(g, pow(2, r - m - 1), p)) % p;
g = pow1(g, pow(2, r - m), p);
b = (b * g) % p;
if (b == 1):
return x;
r = m;
# Driver Code
n = 2;
# p should be prime
p = 113;
x = STonelli(n, p);
if (x == -1):
print("Modular square root is not exist\n");
else:
print("Modular square root of", n,
"and", p, "is", x);
# This code is contributed by mits
C#
// C# program to implement Shanks
// Tonelli algorithm for finding
// Modular Square Roots
using System;
class GFG
{
static int z=0;
// utility function to find
// pow(base, exponent) % modulus
static int pow1(int base1,
int exponent, int modulus)
{
int result = 1;
base1 = base1 % modulus;
while (exponent > 0)
{
if (exponent % 2 == 1)
result = (result * base1) % modulus;
exponent = exponent >> 1;
base1 = (base1 * base1) % modulus;
}
return result;
}
// utility function to find gcd
static int gcd(int a, int b)
{
if (b == 0)
return a;
else
return gcd(b, a % b);
}
// Returns k such that b^k = 1 (mod p)
static int order(int p, int b)
{
if (gcd(p, b) != 1)
{
Console.WriteLine("p and b are" +
"not co-prime.");
return -1;
}
// Initializing k with
// first odd prime number
int k = 3;
while (true)
{
if (pow1(b, k, p) == 1)
return k;
k++;
}
}
// function return p - 1 (= x argument)
// as x * 2^e, where x will be odd sending
// e as reference because updation is
// needed in actual e
static int convertx2e(int x)
{
z = 0;
while (x % 2 == 0)
{
x /= 2;
z++;
}
return x;
}
// Main function for finding
// the modular square root
static int STonelli(int n, int p)
{
// a and p should be coprime for
// finding the modular square root
if (gcd(n, p) != 1)
{
Console.WriteLine("a and p are not coprime");
return -1;
}
// If below expression return (p - 1) then
// modular square root is not possible
if (pow1(n, (p - 1) / 2, p) == (p - 1))
{
Console.WriteLine("no sqrt possible");
return -1;
}
// expressing p - 1, in terms of s * 2^e,
// where s is odd number
int s, e;
s = convertx2e(p - 1);
e=z;
// finding smallest q such that q ^ ((p - 1) / 2)
// (mod p) = p - 1
int q;
for (q = 2; ; q++)
{
// q - 1 is in place of (-1 % p)
if (pow1(q, (p - 1) / 2, p) == (p - 1))
break;
}
// Initializing variable x, b and g
int x = pow1(n, (s + 1) / 2, p);
int b = pow1(n, s, p);
int g = pow1(q, s, p);
int r = e;
// keep looping until b become
// 1 or m becomes 0
while (true)
{
int m;
for (m = 0; m < r; m++)
{
if (order(p, b) == -1)
return -1;
// finding m such that b^ (2^m) = 1
if (order(p, b) == Math.Pow(2, m))
break;
}
if (m == 0)
return x;
// updating value of x, g and b
// according to algorithm
x = (x * pow1(g, (int)Math.Pow(2, r - m - 1), p)) % p;
g = pow1(g, (int)Math.Pow(2, r - m), p);
b = (b * g) % p;
if (b == 1)
return x;
r = m;
}
}
// Driver code
static void Main()
{
int n = 2;
// p should be prime
int p = 113;
int x = STonelli(n, p);
if (x == -1)
Console.WriteLine("Modular square root" +
"is not exist\n");
else
Console.WriteLine("Modular square root of" +
"{0} and {1} is {2}\n", n, p, x);
}
}
// This code is contributed by mits
PHP
<?php
// PHP program to implement Shanks Tonelli
// algorithm for finding Modular Square Roots
// utility function to find pow(base,
// exponent) % modulus
function pow1($base, $exponent, $modulus)
{
$result = 1;
$base = $base % $modulus;
while ($exponent > 0)
{
if ($exponent % 2 == 1)
$result = ($result * $base) % $modulus;
$exponent = $exponent >> 1;
$base = ($base * $base) % $modulus;
}
return $result;
}
// utility function to find gcd
function gcd($a, $b)
{
if ($b == 0)
return $a;
else
return gcd($b, $a % $b);
}
// Returns k such that b^k = 1 (mod p)
function order($p, $b)
{
if (gcd($p, $b) != 1)
{
print("p and b are not co-prime.\n");
return -1;
}
// Initializing k with first
// odd prime number
$k = 3;
while (1)
{
if (pow1($b, $k, $p) == 1)
return $k;
$k++;
}
}
// function return p - 1 (= x argument) as
// x * 2^e, where x will be odd sending e
// as reference because updation is needed
// in actual e
function convertx2e($x, &$e)
{
$e = 0;
while ($x % 2 == 0)
{
$x = (int)($x / 2);
$e++;
}
return $x;
}
// Main function for finding the
// modular square root
function STonelli($n, $p)
{
// a and p should be coprime for
// finding the modular square root
if (gcd($n, $p) != 1)
{
print("a and p are not coprime\n");
return -1;
}
// If below expression return (p - 1) then
// modular square root is not possible
if (pow1($n, ($p - 1) / 2, $p) == ($p - 1))
{
printf("no sqrt possible\n");
return -1;
}
// expressing p - 1, in terms of s * 2^e,
// where s is odd number
$e = 0;
$s = convertx2e($p - 1, $e);
// finding smallest q such that
// q ^ ((p - 1) / 2) (mod p) = p - 1
$q = 2;
for (; ; $q++)
{
// q - 1 is in place of (-1 % p)
if (pow1($q, ($p - 1) / 2, $p) == ($p - 1))
break;
}
// Initializing variable x, b and g
$x = pow1($n, ($s + 1) / 2, $p);
$b = pow1($n, $s, $p);
$g = pow1($q, $s, $p);
$r = $e;
// keep looping until b become
// 1 or m becomes 0
while (1)
{
$m = 0;
for (; $m < $r; $m++)
{
if (order($p, $b) == -1)
return -1;
// finding m such that b^ (2^m) = 1
if (order($p, $b) == pow(2, $m))
break;
}
if ($m == 0)
return $x;
// updating value of x, g and b
// according to algorithm
$x = ($x * pow1($g, pow(2, $r - $m - 1), $p)) % $p;
$g = pow1($g, pow(2, $r - $m), $p);
$b = ($b * $g) % $p;
if ($b == 1)
return $x;
$r = $m;
}
}
// Driver Code
$n = 2;
// p should be prime
$p = 113;
$x = STonelli($n, $p);
if ($x == -1)
print("Modular square root is not exist\n");
else
print("Modular square root of " .
"$n and $p is $x\n");
// This code is contributed by mits
?>
JavaScript
<script>
// JavaScript program to implement Shanks
// Tonelli algorithm for finding
// Modular Square Roots
let z = 0;
// utility function to find
// pow(base, exponent) % modulus
function pow1(base1,
exponent, modulus)
{
let result = 1;
base1 = base1 % modulus;
while (exponent > 0)
{
if (exponent % 2 == 1)
result = (result * base1) % modulus;
exponent = exponent >> 1;
base1 = (base1 * base1) % modulus;
}
return result;
}
// utility function to find gcd
function gcd(a, b)
{
if (b == 0)
return a;
else
return gcd(b, a % b);
}
// Returns k such that b^k = 1 (mod p)
function order(p, b)
{
if (gcd(p, b) != 1)
{
document.write("p and b are" +
"not co-prime." + "<br/>");
return -1;
}
// Initializing k with first
// odd prime number
let k = 3;
while (true)
{
if (pow1(b, k, p) == 1)
return k;
k++;
}
}
// function return p - 1 (= x argument)
// as x * 2^e, where x will be odd
// sending e as reference because
// updation is needed in actual e
function convertx2e(x)
{
z = 0;
while (x % 2 == 0)
{
x /= 2;
z++;
}
return x;
}
// Main function for finding
// the modular square root
function STonelli(n, p)
{
// a and p should be coprime for
// finding the modular square root
if (gcd(n, p) != 1)
{
System.out.prletln("a and p are not coprime");
return -1;
}
// If below expression return (p - 1) then modular
// square root is not possible
if (pow1(n, (p - 1) / 2, p) == (p - 1))
{
document.write("no sqrt possible" + "<br/>");
return -1;
}
// expressing p - 1, in terms of
// s * 2^e, where s is odd number
let s, e;
s = convertx2e(p - 1);
e = z;
// finding smallest q such that q ^ ((p - 1) / 2)
// (mod p) = p - 1
let q;
for (q = 2; ; q++)
{
// q - 1 is in place of (-1 % p)
if (pow1(q, (p - 1) / 2, p) == (p - 1))
break;
}
// Initializing variable x, b and g
let x = pow1(n, (s + 1) / 2, p);
let b = pow1(n, s, p);
let g = pow1(q, s, p);
let r = e;
// keep looping until b
// become 1 or m becomes 0
while (true)
{
let m;
for (m = 0; m < r; m++)
{
if (order(p, b) == -1)
return -1;
// finding m such that b^ (2^m) = 1
if (order(p, b) == Math.pow(2, m))
break;
}
if (m == 0)
return x;
// updating value of x, g and b
// according to algorithm
x = (x * pow1(g, Math.pow(2,
r - m - 1), p)) % p;
g = pow1(g, Math.pow(2, r - m), p);
b = (b * g) % p;
if (b == 1)
return x;
r = m;
}
}
// Driver Code
let n = 2;
// p should be prime
let p = 113;
let x = STonelli(n, p);
if (x == -1)
document.write("Modular square" +
"root is not exist\n");
else
document.write("Modular square root of " +
n + " and " + p + " is " +
x + "\n");
</script>
OutputModular square root of 2 and 113 is 62
For more detail about above algorithm please visit :
http://cs.indstate.edu/~sgali1/Shanks_Tonelli.pdf
For detail of example (2, 113) see :
https://math.vt.edu/people/brown/class_homepages/shanks_tonelli.pdf
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem