Point arbit pointer to greatest value right side node in a linked list
Last Updated :
06 Apr, 2023
Given singly linked list with every node having an additional “arbitrary” pointer that currently points to NULL. We need to make the “arbitrary” pointer to the greatest value node in a linked list on its right side.

A Simple Solution is to traverse all nodes one by one. For every node, find the node which has the greatest value on the right side and change the next pointer. The Time Complexity of this solution is O(n2).
An Efficient Solution can work in O(n) time. Below are the steps.
- Reverse the given linked list.
- Start traversing the linked list and store the maximum value node encountered so far. Make arbit of every node to point to max. If the data in the current node is more than the max node so far, update max.
- Reverse modified linked list and return head.
Following is the implementation of the above steps.
C++
// C++ program to point arbit pointers to highest
// value on its right
#include<bits/stdc++.h>
using namespace std;
/* Link list node */
struct Node
{
int data;
Node* next, *arbit;
};
/* Function to reverse the linked list */
Node* reverse(Node *head)
{
Node *prev = NULL, *current = head, *next;
while (current != NULL)
{
next = current->next;
current->next = prev;
prev = current;
current = next;
}
return prev;
}
// This function populates arbit pointer in every
// node to the greatest value to its right.
Node* populateArbit(Node *head)
{
// Reverse given linked list
head = reverse(head);
// Initialize pointer to maximum value node
Node *max = head;
// Traverse the reversed list
Node *temp = head->next;
while (temp != NULL)
{
// Connect max through arbit pointer
temp->arbit = max;
// Update max if required
if (max->data < temp->data)
max = temp;
// Move ahead in reversed list
temp = temp->next;
}
// Reverse modified linked list and return
// head.
return reverse(head);
}
// Utility function to print result linked list
void printNextArbitPointers(Node *node)
{
printf("Node\tNext Pointer\tArbit Pointer\n");
while (node!=NULL)
{
cout << node->data << "\t\t";
if (node->next)
cout << node->next->data << "\t\t";
else cout << "NULL" << "\t\t";
if (node->arbit)
cout << node->arbit->data;
else cout << "NULL";
cout << endl;
node = node->next;
}
}
/* Function to create a new node with given data */
Node *newNode(int data)
{
Node *new_node = new Node;
new_node->data = data;
new_node->next = NULL;
return new_node;
}
/* Driver program to test above functions*/
int main()
{
Node *head = newNode(5);
head->next = newNode(10);
head->next->next = newNode(2);
head->next->next->next = newNode(3);
head = populateArbit(head);
printf("Resultant Linked List is: \n");
printNextArbitPointers(head);
return 0;
}
Java
// Java program to point arbit pointers to highest
// value on its right
class GfG
{
/* Link list node */
static class Node
{
int data;
Node next, arbit;
}
/* Function to reverse the linked list */
static Node reverse(Node head)
{
Node prev = null, current = head, next = null;
while (current != null)
{
next = current.next;
current.next = prev;
prev = current;
current = next;
}
return prev;
}
// This function populates arbit pointer in every
// node to the greatest value to its right.
static Node populateArbit(Node head)
{
// Reverse given linked list
head = reverse(head);
// Initialize pointer to maximum value node
Node max = head;
// Traverse the reversed list
Node temp = head.next;
while (temp != null)
{
// Connect max through arbit pointer
temp.arbit = max;
// Update max if required
if (max.data < temp.data)
max = temp;
// Move ahead in reversed list
temp = temp.next;
}
// Reverse modified linked list and return
// head.
return reverse(head);
}
// Utility function to print result linked list
static void printNextArbitPointers(Node node)
{
System.out.println("Node\tNext Pointer\tArbit Pointer");
while (node != null)
{
System.out.print(node.data + "\t\t");
if (node.next != null)
System.out.print(node.next.data + "\t\t");
else
System.out.print("NULL" +"\t\t");
if (node.arbit != null)
System.out.print(node.arbit.data);
else
System.out.print("NULL");
System.out.println();
node = node.next;
}
}
/* Function to create a new node with given data */
static Node newNode(int data)
{
Node new_node = new Node();
new_node.data = data;
new_node.next = null;
return new_node;
}
/* Driver code*/
public static void main(String[] args)
{
Node head = newNode(5);
head.next = newNode(10);
head.next.next = newNode(2);
head.next.next.next = newNode(3);
head = populateArbit(head);
System.out.println("Resultant Linked List is: ");
printNextArbitPointers(head);
}
}
// This code is contributed by Prerna Saini.
Python
# Python Program to point arbit pointers to highest
# value on its right
# Node class
class Node:
# Constructor to initialize the node object
def __init__(self, data):
self.data = data
self.next = None
self.arbit = None
# Function to reverse the linked list
def reverse(head):
prev = None
current = head
next = None
while (current != None):
next = current.next
current.next = prev
prev = current
current = next
return prev
# This function populates arbit pointer in every
# node to the greatest value to its right.
def populateArbit(head):
# Reverse given linked list
head = reverse(head)
# Initialize pointer to maximum value node
max = head
# Traverse the reversed list
temp = head.next
while (temp != None):
# Connect max through arbit pointer
temp.arbit = max
# Update max if required
if (max.data < temp.data):
max = temp
# Move ahead in reversed list
temp = temp.next
# Reverse modified linked list and return
# head.
return reverse(head)
# Utility function to print result linked list
def printNextArbitPointers(node):
print("Node\tNext Pointer\tArbit Pointer\n")
while (node != None):
print( node.data , "\t\t",end = "")
if (node.next != None):
print( node.next.data , "\t\t",end = "")
else :
print( "None" , "\t\t",end = "")
if (node.arbit != None):
print( node.arbit.data,end = "")
else :
print( "None",end = "")
print("\n")
node = node.next
# Function to create a new node with given data
def newNode(data):
new_node = Node(0)
new_node.data = data
new_node.next = None
return new_node
# Driver code
head = newNode(5)
head.next = newNode(10)
head.next.next = newNode(2)
head.next.next.next = newNode(3)
head = populateArbit(head)
print("Resultant Linked List is: \n")
printNextArbitPointers(head)
# This code is contributed by Arnab Kundu
C#
// C# program to point arbit pointers
// to highest value on its right
using System;
class GfG
{
/* Link list node */
class Node
{
public int data;
public Node next, arbit;
}
/* Function to reverse the linked list */
static Node reverse(Node head)
{
Node prev = null, current = head, next = null;
while (current != null)
{
next = current.next;
current.next = prev;
prev = current;
current = next;
}
return prev;
}
// This function populates arbit pointer in every
// node to the greatest value to its right.
static Node populateArbit(Node head)
{
// Reverse given linked list
head = reverse(head);
// Initialize pointer to maximum value node
Node max = head;
// Traverse the reversed list
Node temp = head.next;
while (temp != null)
{
// Connect max through arbit pointer
temp.arbit = max;
// Update max if required
if (max.data < temp.data)
max = temp;
// Move ahead in reversed list
temp = temp.next;
}
// Reverse modified linked list
// and return head.
return reverse(head);
}
// Utility function to print result linked list
static void printNextArbitPointers(Node node)
{
Console.WriteLine("Node\tNext Pointer\tArbit Pointer");
while (node != null)
{
Console.Write(node.data + "\t\t");
if (node.next != null)
Console.Write(node.next.data + "\t\t");
else
Console.Write("NULL" +"\t\t");
if (node.arbit != null)
Console.Write(node.arbit.data);
else
Console.Write("NULL");
Console.WriteLine();
node = node.next;
}
}
/* Function to create a new node with given data */
static Node newNode(int data)
{
Node new_node = new Node();
new_node.data = data;
new_node.next = null;
return new_node;
}
/* Driver code*/
public static void Main(String[] args)
{
Node head = newNode(5);
head.next = newNode(10);
head.next.next = newNode(2);
head.next.next.next = newNode(3);
head = populateArbit(head);
Console.WriteLine("Resultant Linked List is: ");
printNextArbitPointers(head);
}
}
/* This code is contributed by 29AjayKumar */
JavaScript
<script>
// javascript program to point arbit pointers to highest
// value on its right
/* Link list node */
class Node {
constructor(val) {
this.data = val;
this.arbit = null;
this.next = null;
}
}
/* Function to reverse the linked list */
function reverse(head) {
var prev = null, current = head, next = null;
while (current != null) {
next = current.next;
current.next = prev;
prev = current;
current = next;
}
return prev;
}
// This function populates arbit pointer in every
// node to the greatest value to its right.
function populateArbit(head) {
// Reverse given linked list
head = reverse(head);
// Initialize pointer to maximum value node
var max = head;
// Traverse the reversed list
var temp = head.next;
while (temp != null) {
// Connect max through arbit pointer
temp.arbit = max;
// Update max if required
if (max.data < temp.data)
max = temp;
// Move ahead in reversed list
temp = temp.next;
}
// Reverse modified linked list and return
// head.
return reverse(head);
}
// Utility function to print result linked list
function printNextArbitPointers(node) {
document.write("Node Next Pointer Arbit Pointer<br/>");
while (node != null) {
document.write(node.data + " ");
if (node.next != null)
document.write(node.next.data + " ");
else
document.write("NULL" + " ");
if (node.arbit != null)
document.write(node.arbit.data);
else
document.write("NULL");
document.write("<br/>");
node = node.next;
}
}
/* Function to create a new node with given data */
function newNode(data) {
var new_node = new Node();
new_node.data = data;
new_node.next = null;
return new_node;
}
/* Driver code */
var head = newNode(5);
head.next = newNode(10);
head.next.next = newNode(2);
head.next.next.next = newNode(3);
head = populateArbit(head);
document.write("Resultant Linked List is: <br/>");
printNextArbitPointers(head);
// This code is contributed by umadevi9616
</script>
OutputResultant Linked List is:
Node Next Pointer Arbit Pointer
5 10 10
10 2 3
2 3 3
3 NULL NULL
The time complexity of the reverse function is O(n) as it iterates over each node in the linked list once.
The space complexity of the program is O(1).
Recursive Solution: We can recursively reach the last node and traverse the linked list from the end. The recursive solution doesn’t require reversing of the linked list. We can also use a stack in place of recursion to temporarily hold nodes. Thanks to Santosh Kumar Mishra for providing this solution.
C++
// C++ program to point arbit pointers to highest
// value on its right
#include<bits/stdc++.h>
using namespace std;
/* Link list node */
struct Node
{
int data;
Node* next, *arbit;
};
// This function populates arbit pointer in every
// node to the greatest value to its right.
void populateArbit(Node *head)
{
// using static maxNode to keep track of maximum
// orbit node address on right side
static Node *maxNode;
// if head is null simply return the list
if (head == NULL)
return;
/* if head->next is null it means we reached at
the last node just update the max and maxNode */
if (head->next == NULL)
{
maxNode = head;
return;
}
/* Calling the populateArbit to the next node */
populateArbit(head->next);
/* updating the arbit node of the current
node with the maximum value on the right side */
head->arbit = maxNode;
/* if current Node value id greater then
the previous right node then update it */
if (head->data > maxNode->data)
maxNode = head;
return;
}
// Utility function to print result linked list
void printNextArbitPointers(Node *node)
{
printf("Node\tNext Pointer\tArbit Pointer\n");
while (node!=NULL)
{
cout << node->data << "\t\t";
if(node->next)
cout << node->next->data << "\t\t";
else cout << "NULL" << "\t\t";
if(node->arbit)
cout << node->arbit->data;
else cout << "NULL";
cout << endl;
node = node->next;
}
}
/* Function to create a new node with given data */
Node *newNode(int data)
{
Node *new_node = new Node;
new_node->data = data;
new_node->next = NULL;
return new_node;
}
/* Driver program to test above functions*/
int main()
{
Node *head = newNode(5);
head->next = newNode(10);
head->next->next = newNode(2);
head->next->next->next = newNode(3);
populateArbit(head);
printf("Resultant Linked List is: \n");
printNextArbitPointers(head);
return 0;
}
Java
// Java program to point arbit pointers to highest
// value on its right
class GfG
{
/* Link list node */
static class Node
{
int data;
Node next, arbit;
}
static Node maxNode;
// This function populates arbit pointer in every
// node to the greatest value to its right.
static void populateArbit(Node head)
{
// if head is null simply return the list
if (head == null)
return;
/* if head->next is null it means we reached at
the last node just update the max and maxNode */
if (head.next == null)
{
maxNode = head;
return;
}
/* Calling the populateArbit to the next node */
populateArbit(head.next);
/* updating the arbit node of the current
node with the maximum value on the right side */
head.arbit = maxNode;
/* if current Node value id greater then
the previous right node then update it */
if (head.data > maxNode.data)
maxNode = head;
return;
}
// Utility function to print result linked list
static void printNextArbitPointers(Node node)
{
System.out.println("Node\tNext Pointer\tArbit Pointer");
while (node != null)
{
System.out.print(node.data + "\t\t\t");
if (node.next != null)
System.out.print(node.next.data + "\t\t\t\t");
else
System.out.print("NULL" +"\t\t\t");
if (node.arbit != null)
System.out.print(node.arbit.data);
else
System.out.print("NULL");
System.out.println();
node = node.next;
}
}
/* Function to create a new node with given data */
static Node newNode(int data)
{
Node new_node = new Node();
new_node.data = data;
new_node.next = null;
return new_node;
}
/* Driver code*/
public static void main(String[] args)
{
Node head = newNode(5);
head.next = newNode(10);
head.next.next = newNode(2);
head.next.next.next = newNode(3);
populateArbit(head);
System.out.println("Resultant Linked List is: ");
printNextArbitPointers(head);
}
}
// This code is contributed by shubham96301
Python3
# Python3 program to point arbit pointers to highest
# value on its right
''' Link list node '''
# Node class
class newNode:
# Constructor to initialize the node object
def __init__(self, data):
self.data = data
self.next = None
self.arbit = None
# This function populates arbit pointer in every
# node to the greatest value to its right.
maxNode = newNode(None)
def populateArbit(head):
# using static maxNode to keep track of maximum
# orbit node address on right side
global maxNode
# if head is null simply return the list
if (head == None):
return
''' if head.next is null it means we reached at
the last node just update the max and maxNode '''
if (head.next == None):
maxNode = head
return
''' Calling the populateArbit to the next node '''
populateArbit(head.next)
''' updating the arbit node of the current
node with the maximum value on the right side '''
head.arbit = maxNode
''' if current Node value id greater then
the previous right node then update it '''
if (head.data > maxNode.data and maxNode.data != None ):
maxNode = head
return
# Utility function to print result linked list
def printNextArbitPointers(node):
print("Node\tNext Pointer\tArbit Pointer")
while (node != None):
print(node.data,"\t\t", end = "")
if(node.next):
print(node.next.data,"\t\t", end = "")
else:
print("NULL","\t\t", end = "")
if(node.arbit):
print(node.arbit.data, end = "")
else:
print("NULL", end = "")
print()
node = node.next
''' Driver code'''
head = newNode(5)
head.next = newNode(10)
head.next.next = newNode(2)
head.next.next.next = newNode(3)
populateArbit(head)
print("Resultant Linked List is:")
printNextArbitPointers(head)
# This code is contributed by SHUBHAMSINGH10
C#
// C# program to point arbit pointers to highest
// value on its right
using System;
class GfG
{
/* Link list node */
public class Node
{
public int data;
public Node next, arbit;
}
static Node maxNode;
// This function populates arbit pointer in every
// node to the greatest value to its right.
static void populateArbit(Node head)
{
// if head is null simply return the list
if (head == null)
return;
/* if head->next is null it means we reached at
the last node just update the max and maxNode */
if (head.next == null)
{
maxNode = head;
return;
}
/* Calling the populateArbit to the next node */
populateArbit(head.next);
/* updating the arbit node of the current
node with the maximum value on the right side */
head.arbit = maxNode;
/* if current Node value id greater then
the previous right node then update it */
if (head.data > maxNode.data)
maxNode = head;
return;
}
// Utility function to print result linked list
static void printNextArbitPointers(Node node)
{
Console.WriteLine("Node\tNext Pointer\tArbit Pointer");
while (node != null)
{
Console.Write(node.data + "\t\t\t");
if (node.next != null)
Console.Write(node.next.data + "\t\t\t\t");
else
Console.Write("NULL" +"\t\t\t");
if (node.arbit != null)
Console.Write(node.arbit.data);
else
Console.Write("NULL");
Console.WriteLine();
node = node.next;
}
}
/* Function to create a new node with given data */
static Node newNode(int data)
{
Node new_node = new Node();
new_node.data = data;
new_node.next = null;
return new_node;
}
/* Driver code*/
public static void Main(String[] args)
{
Node head = newNode(5);
head.next = newNode(10);
head.next.next = newNode(2);
head.next.next.next = newNode(3);
populateArbit(head);
Console.WriteLine("Resultant Linked List is: ");
printNextArbitPointers(head);
}
}
/* This code contributed by PrinciRaj1992 */
JavaScript
<script>
// Javascript program to point
// arbit pointers to highest
// value on its right
/* Link list node */
class Node {
constructor() {
this.data = 0;
this.arbit = null;
this.next = null;
}
}
var maxNode;
// This function populates arbit pointer in every
// node to the greatest value to its right.
function populateArbit(head) {
// if head is null simply return the list
if (head == null)
return;
/*
if head->next is null it means we
reached at the last node just update the
max and maxNode
*/
if (head.next == null) {
maxNode = head;
return;
}
/* Calling the populateArbit to the next node */
populateArbit(head.next);
/*
updating the arbit node of the current
node with the maximum value on the
right side
*/
head.arbit = maxNode;
/*
if current Node value id greater then
the previous right node then update it
*/
if (head.data > maxNode.data)
maxNode = head;
return;
}
// Utility function to print result linked list
function printNextArbitPointers(node) {
document.write(
"Node Next Pointer Arbit Pointer<br/>"
);
while (node != null) {
document.write(node.data +
"     ");
if (node.next != null)
document.write(node.next.data +
"     ");
else
document.write("NULL" +
"   ");
if (node.arbit != null)
document.write(node.arbit.data);
else
document.write("NULL");
document.write("<br/>");
node = node.next;
}
}
/* Function to create a new node with given data */
function newNode(data) {
var new_node = new Node();
new_node.data = data;
new_node.next = null;
return new_node;
}
/* Driver code */
var head = newNode(5);
head.next = newNode(10);
head.next.next = newNode(2);
head.next.next.next = newNode(3);
populateArbit(head);
document.write("Resultant Linked List is: <br/>");
printNextArbitPointers(head);
// This code contributed by gauravrajput1
</script>
OutputResultant Linked List is:
Node Next Pointer Arbit Pointer
5 10 10
10 2 3
2 3 3
3 NULL NULL
The time complexity of this program is O(n), where n is the length of the linked list.
The space complexity of this program is also O(n), where n is the length of the linked list.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem