Background :
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.
Example:
First Pass:
( 5 1 4 2 8 ) --> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) --> ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) --> ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) --> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) --> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) --> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) --> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) --> ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) --> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) --> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) --> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) --> ( 1 2 4 5 8 )
Following is iterative Bubble sort algorithm :
// Iterative Bubble Sort
bubbleSort(arr[], n)
{
for (i = 0; i < n-1; i++)
// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
{
if(arr[j] > arr[j+1])
swap(arr[j], arr[j+1]);
}
}
See Bubble Sort for more details.
How to implement it recursively?
Recursive Bubble Sort has no performance/implementation advantages, but can be a good question to check one's understanding of Bubble Sort and recursion.
If we take a closer look at Bubble Sort algorithm, we can notice that in first pass, we move largest element to end (Assuming sorting in increasing order). In second pass, we move second largest element to second last position and so on.
Recursion Idea.
- Base Case: If array size is 1, return.
- Do One Pass of normal Bubble Sort. This pass fixes last element of current subarray.
- Recur for all elements except last of current subarray.
Below is implementation of above idea.
C++
// C++ program for recursive implementation
// of Bubble sort
#include <bits/stdc++.h>
using namespace std;
// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
// Base case
if (n == 1)
return;
int count = 0;
// One pass of bubble sort. After
// this pass, the largest element
// is moved (or bubbled) to end.
for (int i=0; i<n-1; i++)
if (arr[i] > arr[i+1]){
swap(arr[i], arr[i+1]);
count++;
}
// Check if any recursion happens or not
// If any recursion is not happen then return
if (count==0)
return;
// Largest element is fixed,
// recur for remaining array
bubbleSort(arr, n-1);
}
/* Function to print an array */
void printArray(int arr[], int n)
{
for (int i=0; i < n; i++)
cout<<arr[i]<<" ";
cout<<"\n";
}
// Driver program to test above functions
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
cout<<"Sorted array : \n";
printArray(arr, n);
return 0;
}
// Code improved by Susobhan Akhuli
Java
// Java program for recursive implementation
// of Bubble sort
import java.util.Arrays;
public class GFG
{
// A function to implement bubble sort
static void bubbleSort(int arr[], int n)
{
// Base case
if (n == 1)
return;
int count = 0;
// One pass of bubble sort. After
// this pass, the largest element
// is moved (or bubbled) to end.
for (int i=0; i<n-1; i++)
if (arr[i] > arr[i+1])
{
// swap arr[i], arr[i+1]
int temp = arr[i];
arr[i] = arr[i+1];
arr[i+1] = temp;
count = count+1;
}
// Check if any recursion happens or not
// If any recursion is not happen then return
if (count == 0)
return;
// Largest element is fixed,
// recur for remaining array
bubbleSort(arr, n-1);
}
// Driver Method
public static void main(String[] args)
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
bubbleSort(arr, arr.length);
System.out.println("Sorted array : ");
System.out.println(Arrays.toString(arr));
}
}
// Code improved by Susobhan Akhuli
Python3
# Python Program for implementation of
# Recursive Bubble sort
class bubbleSort:
"""
bubbleSort:
function:
bubbleSortRecursive : recursive
function to sort array
__str__ : format print of array
__init__ : constructor
function in python
variables:
self.array = contains array
self.length = length of array
"""
def __init__(self, array):
self.array = array
self.length = len(array)
def __str__(self):
return " ".join([str(x)
for x in self.array])
def bubbleSortRecursive(self, n=None):
if n is None:
n = self.length
count = 0
# Base case
if n == 1:
return
# One pass of bubble sort. After
# this pass, the largest element
# is moved (or bubbled) to end.
for i in range(n - 1):
if self.array[i] > self.array[i + 1]:
self.array[i], self.array[i +
1] = self.array[i + 1], self.array[i]
count = count + 1
# Check if any recursion happens or not
# If any recursion is not happen then return
if (count==0):
return
# Largest element is fixed,
# recur for remaining array
self.bubbleSortRecursive(n - 1)
# Driver Code
def main():
array = [64, 34, 25, 12, 22, 11, 90]
# Creating object for class
sort = bubbleSort(array)
# Sorting array
sort.bubbleSortRecursive()
print("Sorted array :\n", sort)
if __name__ == "__main__":
main()
# Code contributed by Mohit Gupta_OMG,
# improved by itsvinayak
# Code improved by Susobhan Akhuli
C#
// C# program for recursive
// implementation of Bubble sort
using System;
class GFG
{
// A function to implement
// bubble sort
static void bubbleSort(int []arr,
int n)
{
// Base case
if (n == 1)
return;
int count = 0;
// One pass of bubble
// sort. After this pass,
// the largest element
// is moved (or bubbled)
// to end.
for (int i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
{
// swap arr[i], arr[i+1]
int temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
count++;
}
// Check if any recursion happens or not
// If any recursion is not happen then return
if (count==0)
return;
// Largest element is fixed,
// recur for remaining array
bubbleSort(arr, n - 1);
}
// Driver code
static void Main()
{
int []arr = {64, 34, 25,
12, 22, 11, 90};
bubbleSort(arr, arr.Length);
Console.WriteLine("Sorted array : ");
for(int i = 0; i < arr.Length; i++)
Console.Write(arr[i] + " ");
}
}
// This code is contributed
// by Sam007
// Code improved by Susobhan Akhuli
JavaScript
<script>
// javascript program for recursive
// implementation of Bubble sort
// A function to implement
// bubble sort
function bubbleSort(arr, n)
{
// Base case
if (n == 1)
return;
var count = 0;
// One pass of bubble
// sort. After this pass,
// the largest element
// is moved (or bubbled)
// to end.
for (var i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
{
// swap arr[i], arr[i+1]
var temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
count++;
}
// Check if any recursion happens or not
// If any recursion is not happen then return
if (count == 0)
return;
// Largest element is fixed,
// recur for remaining array
bubbleSort(arr, n - 1);
}
// Driver code
var arr = [64, 34, 25, 12, 22, 11, 90 ]
bubbleSort(arr, arr.length);
document.write("Sorted array : " + "<br>");
for(var i = 0; i < arr.length; i++) {
document.write(arr[i] + " ");
}
// This code is contributed by bunnyram19.
// Code improved by Susobhan Akhuli
</script>
C
// C program for recursive implementation
// of Bubble sort
#include <stdio.h>
// Swap function
void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
// Base case
if (n == 1)
return;
int count = 0;
// One pass of bubble sort. After
// this pass, the largest element
// is moved (or bubbled) to end.
for (int i=0; i<n-1; i++)
if (arr[i] > arr[i+1]){
swap(&arr[i], &arr[i+1]);
count++;
}
// Check if any recursion happens or not
// If any recursion is not happen then return
if (count==0)
return;
// Largest element is fixed,
// recur for remaining array
bubbleSort(arr, n-1);
}
/* Function to print an array */
void printArray(int arr[], int n)
{
for (int i=0; i < n; i++)
printf("%d ", arr[i]);
printf("\n");
}
// Driver program to test above functions
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array : \n");
printArray(arr, n);
return 0;
}
// This code is submitted by Susobhan Akhuli
PHP
<?php
// PHP program for recursive implementation of Bubble sort
// A function to implement bubble sort
function bubbleSort(&$arr, $n)
{
// Base case
if ($n == 1)
return;
$count = 0;
// One pass of bubble sort. After
// this pass, the largest element
// is moved (or bubbled) to end.
for ($i=0; $i<$n-1; $i++)
if ($arr[$i] > $arr[$i+1]){
list($arr[$i], $arr[$i+1]) = array($arr[$i+1], $arr[$i]);
$count++;
}
// Check if any recursion happens or not
// If any recursion is not happen then return
if ($count==0)
return;
// Largest element is fixed,
// recur for remaining array
bubbleSort($arr, $n-1);
}
/* Function to print an array */
function printArray($arr, $n)
{
for ($i=0; $i < $n; $i++)
echo $arr[$i]." ";
echo "\n";
}
// Driver program to test above functions
$arr = array(64, 34, 25, 12, 22, 11, 90);
$n = sizeof($arr);
bubbleSort($arr, $n);
echo "Sorted array : \n";
printArray($arr, $n);
// This code is submitted by Susobhan Akhuli
?>
OutputSorted array :
11 12 22 25 34 64 90
- Time Complexity: O(n*n)
- Auxiliary Space: O(n)
Question:
1. Difference between iterative and recursive bubble sort?
Ans. Recursive bubble sort runs on O(n) auxiliary space complexity whereas iterative bubble sort runs on O(1) auxiliary space complexity.
2. Which is faster iterative or recursive bubble sort?
Ans. Based on the number of comparisons in each method, the recursive bubble sort is better than the iterative bubble sort, but the time complexity for both the methods is same.
3. Which sorting method we should prefer more iterative or recursive bubble sort?
Ans. Both the methods complete the computation at the same time(according to time complexity analysis) but iterative code takes less memory than recursive one, so we should prefer iterative bubble sort more than recursive bubble sort.
Similar Reads
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Recursive Bubble Sort Background : Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.Example: First Pass: ( 5 1 4 2 8 ) --> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1. ( 1 5 4 2 8 ) --> ( 1 4
10 min read
Time and Space Complexity Analysis of Bubble Sort The time complexity of Bubble Sort is O(n^2) in the worst-case scenario and the space complexity of Bubble sort is O(1). Bubble Sort only needs a constant amount of additional space during the sorting process. Complexity TypeComplexityTime ComplexityBest: O(n)Average: O(n^2)Worst: O(n^2)Space Comple
3 min read
Bubble Sort in different languages
Visualization of Bubble Sort
Bubble Sort for Linked List by Swapping nodes Given a singly linked list, sort it using bubble sort by swapping nodes. Examples:Input: 5 -> 1 -> 32 -> 10 -> 78Output: 1 -> 5 -> 10 -> 32 -> 78 Input: 20 -> 4 -> 3Output: 3 -> 4 -> 20Approach: To apply Bubble Sort to a linked list, we need to traverse the list m
10 min read
Sorting Strings using Bubble Sort Given an array of strings arr[]. Sort given strings using Bubble Sort and display the sorted array. In Bubble Sort, the two successive strings arr[i] and arr[i+1] are exchanged whenever arr[i]> arr[i+1]. The larger values sink to the bottom and are hence called sinking sort. At the end of each pa
4 min read
Sort an array using Bubble Sort without using loops Given an array arr[] consisting of N integers, the task is to sort the given array by using Bubble Sort without using loops. Examples: Input: arr[] = {1, 3, 4, 2, 5}Output: 1 2 3 4 5 Input: arr[] = {1, 3, 4, 2}Output: 1 2 3 4 Approach: The idea to implement Bubble Sort without using loops is based o
9 min read
Bubble Sort On Doubly Linked List Given a doubly linked list, the task is to sort the linked list in non-decreasing order by using bubble sort.Examples: Input : head: 5<->3<->4<->1<->2Output : head: 1<->2<->3<->4<->5Input : head: 5<->4<->3<->2Output : head: 2<->
15+ min read
Bubble sort using two Stacks Prerequisite : Bubble Sort Write a function that sort an array of integers using stacks and also uses bubble sort paradigm. Algorithm: 1. Push all elements of array in 1st stack 2. Run a loop for 'n' times(n is size of array) having the following : 2.a. Keep on pushing elements in the 2nd stack till
6 min read