Sum of Bitwise AND of each array element with the elements of another array
Last Updated :
07 Sep, 2021
Given two arrays arr1[] of size M and arr2[] of size N, the task is to find the sum of bitwise AND of each element of arr1[] with the elements of the array arr2[].
Examples:
Input: arr1[] = {1, 2, 3}, arr2[] = {1, 2, 3}, M = 3, N = 3
Output: 2 4 6
Explanation:
For elements at index 0 in arr1[], Sum = arr1[0] & arr2[0] + arr1[0] & arr2[1] + arr1[0] & arr2[2], Sum = 1 & 1 + 1 & 2 + 1 & 3 = 2
For elements at index 1 in arr1[], Sum = arr1[1] & arr2[0] + arr1[1] & arr2[1] + arr1[1] & arr2[2], Sum= 2 & 1 + 2 & 2 + 2 & 3 = 4
For elements at index 2 in arr1[], Sum = arr1[2] & arr2[0] + arr1[2] & arr2[1] + arr1[2] & arr2[2], Sum= 3 & 1 + 3 & 2 + 3 & 3 = 6
Input: arr1[] = {2, 4, 8, 16}, arr2[] = {2, 4, 8, 16}, M = 4, N = 4
Output: 2 4 8 16
Naive Approach: The simplest approach to solve the problem is to traverse the array arr1[] and for each element of the array arr1[], traverse the array arr2[] and calculate the sum of Bitwise AND of the current elements of arr1[] with all elements of arr2[] for each element
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: The idea is to use bit manipulation to solve the above problem. Suppose every element of the array can be represented using 32 bits only.
- According to the bitwise AND property, while performing the operation, the ith bit will be set bit only when both numbers have a set bit at the ith position, where 0?i<32.
- Therefore, for a number in arr1[], If the ith bit is a set bit, then the ith place will contribute a sum of K*2i, where K is the total number of numbers in arr2[] having set the bit at the ith position.
Follow the steps below to solve the problem:
- Initialize an integer array frequency[] to store the count of numbers in arr2[] having set the bit at ith position where 0?i<32
- Traverse in the array arr2[] and for each element represent it in binary form and increment the count in the frequency[] array by one at the position having 1 in the binary representation.
- Traverse the array arr1[]
- Initialize an integer variable bitwise_AND_sum with 0.
- Traverse in the range [0, 31] using a variable j.
- If the jth bit is set to bit in the binary representation of arr2[i] then increment bitwise_AND_sum by frequency[j]*2j.
- Print the sum obtained i.e., bitwise_AND_sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to compute the AND sum
// for each element of an array
void Bitwise_AND_sum_i(int arr1[], int arr2[], int M, int N)
{
// Declaring an array of
// size 32 for storing the
// count of each bit
int frequency[32] = { 0 };
// Traverse the array arr2[]
// and store the count of a
// bit in frequency array
for (int i = 0; i < N; i++) {
// Current bit position
int bit_position = 0;
int num = arr1[i];
// While num is greater
// than 0
while (num) {
// Checks if ith bit is
// set or not
if (num & 1) {
// Increment the count of
// bit by one
frequency[bit_position] += 1;
}
// Increment the bit position
// by one
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for (int i = 0; i < M; i++) {
int num = arr2[i];
// Store the ith bit
// value
int value_at_that_bit = 1;
// Total required sum
int bitwise_AND_sum = 0;
// Traverse in the range [0, 31]
for (int bit_position = 0; bit_position < 32;
bit_position++) {
// Checks if current bit is set
if (num & 1) {
// Increment the bitwise sum
// by frequency[bit_position]
// * value_at_that_bit;
bitwise_AND_sum += frequency[bit_position]
* value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift vale_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
cout << bitwise_AND_sum << ' ';
}
return;
}
// Driver Code
int main()
{
// Given arr1[]
int arr1[] = { 1, 2, 3 };
// Given arr2[]
int arr2[] = { 1, 2, 3 };
// Size of arr1[]
int N = sizeof(arr1) / sizeof(arr1[0]);
// Size of arr2[]
int M = sizeof(arr2) / sizeof(arr2[0]);
// Function Call
Bitwise_AND_sum_i(arr1, arr2, M, N);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
class GFG
{
// Driver Code
public static void main(String[] args)
{
// Given arr1[]
int[] arr1 = { 1, 2, 3 };
// Given arr2[]
int[] arr2 = { 1, 2, 3 };
// Size of arr1[]
int N = arr1.length;
// Size of arr2[]
int M = arr2.length;
// Function Call
Bitwise_AND_sum_i(arr1, arr2, M, N);
}
// Function to compute the AND sum
// for each element of an array
static void Bitwise_AND_sum_i(int arr1[], int arr2[],
int M, int N)
{
// Declaring an array of
// size 32 for storing the
// count of each bit
int[] frequency = new int[32];
// Traverse the array arr2[]
// and store the count of a
// bit in frequency array
for (int i = 0; i < N; i++)
{
// Current bit position
int bit_position = 0;
int num = arr1[i];
// While num is greater
// than 0
while (num != 0)
{
// Checks if ith bit is
// set or not
if ((num & 1) != 0)
{
// Increment the count of
// bit by one
frequency[bit_position] += 1;
}
// Increment the bit position
// by one
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for (int i = 0; i < M; i++)
{
int num = arr2[i];
// Store the ith bit
// value
int value_at_that_bit = 1;
// Total required sum
int bitwise_AND_sum = 0;
// Traverse in the range [0, 31]
for (int bit_position = 0; bit_position < 32;
bit_position++)
{
// Checks if current bit is set
if ((num & 1) != 0)
{
// Increment the bitwise sum
// by frequency[bit_position]
// * value_at_that_bit;
bitwise_AND_sum
+= frequency[bit_position]
* value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift vale_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
System.out.print( bitwise_AND_sum + " ");
}
}
}
// This code is contributed by Dharanendra L V
Python3
# Python3 program for the above approach
# Function to compute the AND sum
# for each element of an array
def Bitwise_AND_sum_i(arr1, arr2, M, N):
# Declaring an array of
# size 32 for storing the
# count of each bit
frequency = [0]*32
# Traverse the array arr2[]
# and store the count of a
# bit in frequency array
for i in range(N):
# Current bit position
bit_position = 0
num = arr1[i]
# While num is greater
# than 0
while (num):
# Checks if ith bit is
# set or not
if (num & 1):
# Increment the count of
# bit by one
frequency[bit_position] += 1
# Increment the bit position
# by one
bit_position += 1
# Right shift the num by one
num >>= 1
# Traverse in the arr2[]
for i in range(M):
num = arr2[i]
# Store the ith bit
# value
value_at_that_bit = 1
# Total required sum
bitwise_AND_sum = 0
# Traverse in the range [0, 31]
for bit_position in range(32):
# Checks if current bit is set
if (num & 1):
# Increment the bitwise sum
# by frequency[bit_position]
# * value_at_that_bit
bitwise_AND_sum += frequency[bit_position] * value_at_that_bit
# Right shift num by one
num >>= 1
# Left shift vale_at_that_bit by one
value_at_that_bit <<= 1
# Print sum obtained for ith
# number in arr1[]
print(bitwise_AND_sum, end = " ")
return
# Driver Code
if __name__ == '__main__':
# Given arr1[]
arr1 = [1, 2, 3]
# Given arr2
arr2 = [1, 2, 3]
# Size of arr1[]
N = len(arr1)
# Size of arr2[]
M = len(arr2)
# Function Call
Bitwise_AND_sum_i(arr1, arr2, M, N)
# This code is contributed by mohit kumar 29
C#
// C# program for the above approach
using System;
class GFG
{
// Driver code
static public void Main()
{
// Given arr1[]
int[] arr1 = { 1, 2, 3 };
// Given arr2[]
int[] arr2 = { 1, 2, 3 };
// Size of arr1[]
int N = arr1.Length;
// Size of arr2[]
int M = arr2.Length;
// Function Call
Bitwise_AND_sum_i(arr1, arr2, M, N);
}
// Function to compute the AND sum
// for each element of an array
static void Bitwise_AND_sum_i(int[] arr1, int[] arr2,
int M, int N)
{
// Declaring an array of
// size 32 for storing the
// count of each bit
int[] frequency = new int[32];
// Traverse the array arr2[]
// and store the count of a
// bit in frequency array
for (int i = 0; i < N; i++)
{
// Current bit position
int bit_position = 0;
int num = arr1[i];
// While num is greater
// than 0
while (num != 0)
{
// Checks if ith bit is
// set or not
if ((num & 1) != 0)
{
// Increment the count of
// bit by one
frequency[bit_position] += 1;
}
// Increment the bit position
// by one
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for (int i = 0; i < M; i++)
{
int num = arr2[i];
// Store the ith bit
// value
int value_at_that_bit = 1;
// Total required sum
int bitwise_AND_sum = 0;
// Traverse in the range [0, 31]
for (int bit_position = 0; bit_position < 32;
bit_position++) {
// Checks if current bit is set
if ((num & 1) != 0)
{
// Increment the bitwise sum
// by frequency[bit_position]
// * value_at_that_bit;
bitwise_AND_sum
+= frequency[bit_position]
* value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift vale_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
Console.Write(bitwise_AND_sum + " ");
}
}
}
// The code is contributed by Dharanendra L V
JavaScript
<script>
// Javascript program for the above approach
// Function to compute the AND sum
// for each element of an array
function Bitwise_AND_sum_i(arr1, arr2, M, N) {
// Declaring an array of
// size 32 for storing the
// count of each bit
let frequency = new Array(32).fill(0);
// Traverse the array arr2[]
// and store the count of a
// bit in frequency array
for (let i = 0; i < N; i++) {
// Current bit position
let bit_position = 0;
let num = arr1[i];
// While num is greater
// than 0
while (num) {
// Checks if ith bit is
// set or not
if (num & 1) {
// Increment the count of
// bit by one
frequency[bit_position] += 1;
}
// Increment the bit position
// by one
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for (let i = 0; i < M; i++) {
let num = arr2[i];
// Store the ith bit
// value
let value_at_that_bit = 1;
// Total required sum
let bitwise_AND_sum = 0;
// Traverse in the range [0, 31]
for (let bit_position = 0; bit_position < 32; bit_position++) {
// Checks if current bit is set
if (num & 1) {
// Increment the bitwise sum
// by frequency[bit_position]
// * value_at_that_bit;
bitwise_AND_sum += frequency[bit_position] * value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift vale_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
document.write(bitwise_AND_sum + ' ');
}
return;
}
// Driver Code
// Given arr1[]
let arr1 = [1, 2, 3];
// Given arr2[]
let arr2 = [1, 2, 3];
// Size of arr1[]
let N = arr1.length;
// Size of arr2[]
let M = arr2.length
// Function Call
Bitwise_AND_sum_i(arr1, arr2, M, N);
// This code is contributed by _saurabh_jaiswal
</script>
Time Complexity: O(N * 32)
Auxiliary Space: O(N * 32)
Similar Reads
Sum of Bitwise OR of each array element of an array with all elements of another array Given two arrays arr1[] of size M and arr2[] of size N, the task is to find the sum of bitwise OR of each element of arr1[] with every element of the array arr2[]. Examples: Input: arr1[] = {1, 2, 3}, arr2[] = {1, 2, 3}, M = 3, N = 3Output: 7 8 9Explanation: For arr[0]: Sum = arr1[0]|arr2[0] + arr1[
11 min read
Sum of Bitwise XOR of elements of an array with all elements of another array Given an array arr[] of size N and an array Q[], the task is to calculate the sum of Bitwise XOR of all elements of the array arr[] with each element of the array q[]. Examples: Input: arr[ ] = {5, 2, 3}, Q[ ] = {3, 8, 7}Output: 7 34 11Explanation:For Q[0] ( = 3): Sum = 5 ^ 3 + 2 ^ 3 + 3 ^ 3 = 7.For
9 min read
Sum of Bitwise XOR of each array element with all other array elements Given an array arr[] of length N, the task for every array element is to print the sum of its Bitwise XOR with all other array elements. Examples: Input: arr[] = {1, 2, 3}Output: 5 4 3Explanation:For arr[0]: arr[0] ^ arr[0] + arr[0] ^ arr[1] + arr[0] ^ arr[2] = 1^1 + 1^2 + 1^3 = 0 + 3 + 2 = 5For arr
9 min read
Rearrange an array to maximize sum of Bitwise AND of same-indexed elements with another array Given two arrays A[] and B[] of sizes N, the task is to find the maximum sum of Bitwise AND of same-indexed elements in the arrays A[] and B[] that can be obtained by rearranging the array B[] in any order. Examples: Input: A[] = {1, 2, 3, 4}, B[] = {3, 4, 1, 2}Output: 10Explanation: One possible wa
15 min read
Sum of Bitwise OR of every array element paired with all other array elements Given an array arr[] consisting of non-negative integers, the task for each array element arr[i] is to print the sum of Bitwise OR of all pairs (arr[i], arr[j]) ( 0 ⤠j ⤠N ). Examples: Input: arr[] = {1, 2, 3, 4}Output: 12 14 16 22Explanation:For i = 0 the required sum will be (1 | 1) + (1 | 2) + (
11 min read
Find last element in Array formed from bitwise AND of array elements Given an array A[] of size N, the task is to find the last remaining element in a new array B containing all pairwise bitwise AND of elements from A i.e., B consists of N?(N ? 1) / 2 elements, each of the form Ai & Aj for some 1 ? i < j ? N. And we can perform the following operation any numb
6 min read