Mathematics for Competitive Programming Course By GeeksforGeeks Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Mathematics forms the foundation of problem-solving in Competitive Programming (CP). Mastering key mathematical concepts is crucial for approaching algorithmic challenges effectively. If you're an aspiring competitive programmer or someone who wishes to enhance your problem-solving skills, this Mathematics for Competitive Programming Course from GeeksforGeeks is designed specifically for you. This course simplifies complex mathematical concepts, making them easy to understand and apply in CP problems. Whether you're preparing for coding contests or simply want to improve your analytical thinking, this course has everything you need.Mathematics for Competitive Programming - Self PacedThe Mathematics for Competitive Programming - Self Paced course offered by GeeksforGeeks is designed to equip you with the essential mathematical tools needed for success in coding competitions. Mathematics is a core aspect of competitive programming, and this course focuses on simplifying complex concepts and applying them to real-world problems.Whether you're a beginner looking to sharpen your skills or an experienced coder aiming to refine your mathematical foundation, this course provides comprehensive learning that will help you confidently solve algorithmic challenges in competitive programming environments.Key Course HighlightsStructured Modules: In-depth coverage of essential mathematical concepts for competitive programming.Hands-On Practice: Apply your learning with real-world problems from past coding competitions.Expert Guidance: Learn from industry experts with vast experience in competitive programming.Self-Paced Learning: Study at your own pace with lifetime access to all course materials.Interactive Learning: Interactive video lectures, quizzes, and assignments to ensure effective learning and retention.Certification: Receive a certificate upon completion to enhance your resume and portfolioSyllabus Of the CourseThe syllabus for our Course is: 1. Module 1Time ComplexityBasicsFibonacciBit Masking2. Module 2Prime NumbersPrime FactorizationDivisors3. Module 3GCD & LCMNumber Theoretic FunctionsMathematics Principles4. Module 4Modular ArithmeticModular ExponentiationBinomial ConceptsCatalan Number5. Module 5Combinational Game TheoryGeometric AlgorithmsPractice with Misc. ProblemsCheck the detailed syllabus for Mathematics for Competitive Programming Course from here. So, start your journey towards becoming a better competitive programmer today! Enroll Now and get access to high-quality course content designed to help you excel in coding contests.Take your problem-solving skills to the next level with the Mathematics for Competitive Programming courseConclusionMastering mathematics is key to excelling in competitive programming. The Competitive Programming Mathematics course from GeeksforGeeks equips you with the mathematical tools required to solve complex algorithmic challenges quickly and accurately. With structured modules, hands-on practice, and expert guidance, this course is designed to help both beginners and advanced coders sharpen their problem-solving skills. Enroll today to boost your competitive programming performance and improve your coding contest rankings. Comment More infoAdvertise with us Next Article Matrices A abhishek1 Follow Improve Article Tags : Engineering Mathematics GFG-Course GFG-Update Similar Reads Engineering Mathematics Tutorials Engineering mathematics is a vital component of the engineering discipline, offering the analytical tools and techniques necessary for solving complex problems across various fields. Whether you're designing a bridge, optimizing a manufacturing process, or developing algorithms for computer systems, 3 min read Linear AlgebraMatricesMatrices are key concepts in mathematics, widely used in solving equations and problems in fields like physics and computer science. A matrix is simply a grid of numbers, and a determinant is a value calculated from a square matrix.Example: \begin{bmatrix} 6 & 9 \\ 5 & -4 \\ \end{bmatrix}_{2 3 min read Row Echelon FormRow Echelon Form (REF) of a matrix simplifies solving systems of linear equations, understanding linear transformations, and working with matrix equations. A matrix is in Row Echelon form if it has the following properties:Zero Rows at the Bottom: If there are any rows that are completely filled wit 4 min read Eigenvalues and EigenvectorsEigenvalues and eigenvectors are fundamental concepts in linear algebra, used in various applications such as matrix diagonalization, stability analysis and data analysis (e.g., PCA). They are associated with a square matrix and provide insights into its properties.Eigen value and Eigen vectorTable 10 min read System of Linear EquationsA system of linear equations is a set of two or more linear equations involving the same variables. Each equation represents a straight line or a plane and the solution to the system is the set of values for the variables that satisfy all equations simultaneously.Here is simple example of system of 5 min read Matrix DiagonalizationMatrix diagonalization is the process of reducing a square matrix into its diagonal form using a similarity transformation. This process is useful because diagonal matrices are easier to work with, especially when raising them to integer powers.Not all matrices are diagonalizable. A matrix is diagon 8 min read LU DecompositionLU decomposition or factorization of a matrix is the factorization of a given square matrix into two triangular matrices, one upper triangular matrix and one lower triangular matrix, such that the product of these two matrices gives the original matrix. It is a fundamental technique in linear algebr 6 min read Finding Inverse of a Square Matrix using Cayley Hamilton Theorem in MATLABMatrix is the set of numbers arranged in rows & columns in order to form a Rectangular array. Here, those numbers are called the entries or elements of that matrix. A Rectangular array of (m*n) numbers in the form of 'm' horizontal lines (rows) & 'n' vertical lines (called columns), is calle 4 min read Sequence & SeriesMathematics | Sequence, Series and SummationsSequences, series, and summations are fundamental concepts of mathematical analysis and it has practical applications in science, engineering, and finance.Table of ContentWhat is Sequence?Theorems on SequencesProperties of SequencesWhat is Series?Properties of SeriesTheorems on SeriesSummation Defin 8 min read Binomial TheoremBinomial theorem is a fundamental principle in algebra that describes the algebraic expansion of powers of a binomial. According to this theorem, the expression (a + b)n where a and b are any numbers and n is a non-negative integer. It can be expanded into the sum of terms involving powers of a and 15+ min read Finding nth term of any Polynomial SequenceGiven a few terms of a sequence, we are often asked to find the expression for the nth term of this sequence. While there is a multitude of ways to do this, In this article, we discuss an algorithmic approach which will give the correct answer for any polynomial expression. Note that this method fai 4 min read CalculusLimits, Continuity and DifferentiabilityLimits, Continuity, and Differentiation are fundamental concepts in calculus. They are essential for analyzing and understanding function behavior and are crucial for solving real-world problems in physics, engineering, and economics.Table of ContentLimitsKey Characteristics of LimitsExample of Limi 10 min read Cauchy's Mean Value TheoremCauchy's Mean Value theorem provides a relation between the change of two functions over a fixed interval with their derivative. It is a special case of Lagrange Mean Value Theorem. Cauchy's Mean Value theorem is also called the Extended Mean Value Theorem or the Second Mean Value Theorem.According 7 min read Taylor SeriesA Taylor series represents a function as an infinite sum of terms, calculated from the values of its derivatives at a single point.Taylor series is a powerful mathematical tool used to approximate complex functions with an infinite sum of terms derived from the function's derivatives at a single poi 8 min read Inverse functions and composition of functionsInverse Functions - In mathematics a function, a, is said to be an inverse of another, b, if given the output of b a returns the input value given to b. Additionally, this must hold true for every element in the domain co-domain(range) of b. In other words, assuming x and y are constants, if b(x) = 3 min read Definite Integral | Definition, Formula & How to CalculateA definite integral is an integral that calculates a fixed value for the area under a curve between two specified limits. The resulting value represents the sum of all infinitesimal quantities within these boundaries. i.e. if we integrate any function within a fixed interval it is called a Definite 8 min read Application of Derivative - Maxima and MinimaDerivatives have many applications, like finding rate of change, approximation, maxima/minima and tangent. In this section, we focus on their use in finding maxima and minima.Note: If f(x) is a continuous function, then for every continuous function on a closed interval has a maximum and a minimum v 6 min read Probability & StatisticsMean, Variance and Standard DeviationMean, Variance and Standard Deviation are fundamental concepts in statistics and engineering mathematics, essential for analyzing and interpreting data. These measures provide insights into data's central tendency, dispersion, and spread, which are crucial for making informed decisions in various en 10 min read Conditional ProbabilityConditional probability defines the probability of an event occurring based on a given condition or prior knowledge of another event. It is the likelihood of an event occurring, given that another event has already occurred. In probability, this is denoted as A given B, expressed as P(A | B), indica 12 min read Bayes' TheoremBayes' Theorem is a mathematical formula used to determine the conditional probability of an event based on prior knowledge and new evidence. It adjusts probabilities when new information comes in and helps make better decisions in uncertain situations.Bayes' Theorem helps us update probabilities ba 13 min read Probability Distribution - Function, Formula, TableA probability distribution is a mathematical function or rule that describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment.While a Frequency Distribution shows 13 min read Covariance and CorrelationCovariance and correlation are the two key concepts in Statistics that help us analyze the relationship between two variables. Covariance measures how two variables change together, indicating whether they move in the same or opposite directions. Relationship between Independent and dependent variab 6 min read Practice QuestionsLast Minute Notes - Engineering MathematicsGATE CSE is a national-level engineering entrance exam in India specifically for Computer Science and Engineering. It's conducted by top Indian institutions like IISc Bangalore and various IITs. In GATE CSE, engineering mathematics is a significant portion of the exam, typically constituting 15% of 15+ min read Engineering Mathematics - GATE CSE Previous Year QuestionsSolving GATE Previous Year's Questions (PYQs) not only clears the concepts but also helps to gain flexibility, speed, accuracy, and understanding of the level of questions generally asked in the GATE exam, and that eventually helps you to gain good marks in the examination. Previous Year Questions h 4 min read Like