Find duplicates in O(n) time and O(n) extra space
Last Updated :
23 Jul, 2025
Given an array arr[] of n elements that contains elements from 0 to n-1, with any of these numbers appearing any number of times. The task is to find the repeating numbers.
Note: The repeating element should be printed only once.
Example:
Input: n = 7, arr[] = [1, 2, 3, 6, 3, 6, 1]
Output: 1, 3, 6
Explanation: The numbers 1 , 3 and 6 appears more than once in the array.
Input : n = 5, arr[] = [1, 2, 3, 4 ,3]
Output: 3
Explanation: The number 3 appears more than once in the array.
This problem is an extended version of the following problem Find the two repeating elements in a given array.
Using hashmap - O(n) Time and O(n) Space
To find duplicates in an array, start by creating an empty hashmap to track the frequency of each element. Iterate through the array, updating the frequency count for each element in the hashmap. Then, iterate through the hashmap and add any element with a frequency greater than 1 to the result. If no duplicates are found add -1 to the result. Finally, return the result containing either the duplicate elements or -1 if no duplicates were found.
C++
// C++ code to find duplicates in an array
// using hashmap
#include <bits/stdc++.h>
using namespace std;
vector<int> findDuplicates(vector<int> &arr) {
// Step 1: Create an empty unordered map to store
// element frequencies
int n = arr.size();
unordered_map<int, int> freqMap;
vector<int> result;
// Step 2: Iterate through the array and count
// element frequencies
for (int i = 0; i < n; i++) {
freqMap[arr[i]]++;
}
// Step 3: Iterate through the hashmap to find duplicates
for (auto &entry : freqMap) {
if (entry.second > 1) {
result.push_back(entry.first);
}
}
// Step 4: If no duplicates found, add -1 to the result
if (result.empty()) {
result.push_back(-1);
}
// Step 6: Return the result vector containing
// duplicate elements or -1
return result;
}
int main() {
vector<int> arr = {1, 6, 5, 2, 3, 3, 2};
vector<int> duplicates = findDuplicates(arr);
for (int element : duplicates) {
cout << element << " ";
}
return 0;
}
Java
// Java code to find duplicates in an array
// using hashmap
import java.util.*;
class GfG {
static List<Integer> findDuplicates(Integer[] arr) {
// Step 1: Create an empty hashmap to store
// element frequencies
int n = arr.length;
Map<Integer, Integer> freqMap = new HashMap<>();
List<Integer> result = new ArrayList<>();
// Step 2: Iterate through the array and
// count element frequencies
for (int i = 0; i < n; i++) {
freqMap.put(arr[i],
freqMap.getOrDefault(arr[i], 0)
+ 1);
}
// Step 3: Iterate through the hashmap to find
// duplicates
for (Map.Entry<Integer, Integer> entry :
freqMap.entrySet()) {
if (entry.getValue() > 1) {
result.add(entry.getKey());
}
}
// Step 4: If no duplicates found, add -1 to the
// result
if (result.isEmpty()) {
result.add(-1);
}
// Step 6: Return the result list containing
// duplicate elements or -1
return result;
}
public static void main(String[] args) {
Integer[] arr = { 1, 6, 5, 2, 3, 3, 2 };
List<Integer> duplicates = findDuplicates(arr);
for (int element : duplicates) {
System.out.print(element + " ");
}
}
}
Python
# Python code to find duplicates in an array
# using hashmap
def findDuplicates(arr):
# Step 1: Create an empty dictionary
# to store element frequencies
freqMap = {}
result = []
# Step 2: Iterate through the array and
# count element frequencies
for num in arr:
freqMap[num] = freqMap.get(num, 0) + 1
# Step 3: Iterate through the dictionary to
# find duplicates
for key, value in freqMap.items():
if value > 1:
result.append(key)
# Step 4: If no duplicates found, add -1 to the result
if not result:
result.append(-1)
# Step 6: Return the result list containing
# duplicate elements or -1
return result
if __name__ == "__main__":
arr = [1, 6, 5, 2, 3, 3, 2]
duplicates = findDuplicates(arr)
for element in duplicates:
print(element, end=" ")
C#
// C# code to find duplicates in an array
// using hashmap
using System;
using System.Collections.Generic;
class GfG {
static List<int> findDuplicates(int[] arr) {
// Step 1: Create an empty dictionary to
// store element frequencies
int n = arr.Length;
Dictionary<int, int> freqMap
= new Dictionary<int, int>();
List<int> result = new List<int>();
// Step 2: Iterate through the array and
// count element frequencies
for (int i = 0; i < n; i++) {
if (freqMap.ContainsKey(arr[i])) {
freqMap[arr[i]]++;
}
else {
freqMap[arr[i]] = 1;
}
}
// Step 3: Iterate through the dictionary
// to find duplicates
foreach(var entry in freqMap) {
if (entry.Value > 1) {
result.Add(entry.Key);
}
}
// Step 4: If no duplicates found, add -1 to the
// result
if (result.Count == 0) {
result.Add(-1);
}
// Step 6: Return the result list containing
// duplicate elements or -1
return result;
}
static void Main(string[] args) {
int[] arr = new int[] { 1, 6, 5, 2, 3, 3, 2 };
List<int> duplicates = findDuplicates(arr);
foreach(int element in duplicates) {
Console.Write(element + " ");
}
}
}
JavaScript
// JavaScript code to find duplicates in an array
// using hashmap
function findDuplicates(arr) {
// Step 1: Create an empty object to store
// element frequencies
const freqMap = {};
const result = [];
// Step 2: Iterate through the array and
// count element frequencies
for (let num of arr) {
freqMap[num] = (freqMap[num] || 0) + 1;
}
// Step 3: Iterate through the object to find duplicates
for (let key in freqMap) {
if (freqMap[key] > 1) {
result.push(parseInt(key));
}
}
// Step 4: If no duplicates found, add -1 to the result
if (result.length === 0) {
result.push(-1);
}
// Step 6: Return the result array containing
// duplicate elements or -1
return result;
}
// Driver code
const arr = [1, 6, 5, 2, 3, 3, 2];
const duplicates = findDuplicates(arr);
console.log(duplicates.join(' '));
Using Auxiliary Array - O(n) Time and O(n) Space
Since the numbers inside the array range from 0 to n-1 (inclusive), where n is the length of the array, we can utilize an auxiliary array of size n to record the frequency of each element. By iterating through we can found the duplicates easily.
C++
// C++ code to find duplicates in an array
// using auxilary array
#include <bits/stdc++.h>
using namespace std;
vector<int> findDuplicates(vector<int> &arr) {
int n = arr.size();
vector<int> freqArr(n);
vector<int> result;
// Step 2: Iterate through the array and count
// element frequencies
for (int i = 0; i < n; i++) {
freqArr[arr[i]]++;
}
// Step 3: Iterate through all the possible elements to check
// duplicates
for (int i = 0; i < n; i++) {
if (freqArr[i] > 1) {
result.push_back(i);
}
}
// Step 4: If no duplicates found, add -1 to the result
if (result.empty()) {
result.push_back(-1);
}
// Step 6: Return the result vector containing
// duplicate elements or -1
return result;
}
int main() {
vector<int> arr = {1, 6, 5, 2, 3, 3, 2};
vector<int> duplicates = findDuplicates(arr);
for (int element : duplicates) {
cout << element << " ";
}
return 0;
}
Java
// Java code to find duplicates in an array
// using auxiliary array
import java.util.*;
class GfG {
static int[] findDuplicates(int[] arr) {
int n = arr.length;
int[] freqArr = new int[n];
List<Integer> result = new ArrayList<>();
// Step 2: Iterate through the array
// and count element frequencies
for (int i = 0; i < n; i++) {
freqArr[arr[i]]++;
}
// Step 3: Iterate through all the possible
// elements to check duplicates
for (int i = 0; i < n; i++) {
if (freqArr[arr[i]] > 1) {
result.add(arr[i]);
freqArr[arr[i]]
= 0; // To avoid adding duplicates again
}
}
// Step 4: If no duplicates found, add -1 to the
// result
if (result.isEmpty()) {
result.add(-1);
}
// Convert the result list to an array and return
return result.stream().mapToInt(i -> i).toArray();
}
public static void main(String[] args) {
int[] arr = { 1, 6, 5, 2, 3, 3, 2 };
int[] duplicates = findDuplicates(arr);
for (int element : duplicates) {
System.out.print(element + " ");
}
}
}
Python
# Python code to find duplicates in an array
# using auxiliary array
def findDuplicates(arr):
n = len(arr)
freqArr = [0] * n
result = []
# Step 2: Iterate through the array and
# count element frequencies
for num in arr:
freqArr[num] += 1
# Step 3: Iterate through all the possible
# elements to check duplicates
for i in range(n):
if freqArr[i] > 1:
result.append(i)
# Step 4: If no duplicates found,
# add -1 to the result
if not result:
result.append(-1)
# Step 6: Return the result list containing
# duplicate elements or -1
return result
if __name__ == "__main__":
arr = [1, 6, 5, 2, 3, 3, 2]
duplicates = findDuplicates(arr)
for element in duplicates:
print(element, end=" ")
C#
// C# code to find duplicates in an array
// using auxiliary array
using System;
using System.Collections.Generic;
class GfG {
static int[] findDuplicates(int[] arr) {
int n = arr.Length;
int[] freqArr = new int[n];
List<int> result = new List<int>();
// Step 2: Iterate through the array and count
// element frequencies
for (int i = 0; i < n; i++) {
freqArr[arr[i]]++;
}
// Step 3: Iterate through all the possible elements
// to check duplicates
for (int i = 0; i < n; i++) {
if (freqArr[arr[i]] > 1) {
result.Add(arr[i]);
freqArr[arr[i]]
= 0;
}
}
// Step 4: If no duplicates found, add -1 to the
// result
if (result.Count == 0) {
result.Add(-1);
}
// Step 6: Return the result list containing
// duplicate elements or -1
return result.ToArray();
}
static void Main(string[] args) {
int[] arr = { 1, 6, 5, 2, 3, 3, 2 };
int[] duplicates = findDuplicates(arr);
foreach(int element in duplicates) {
Console.Write(element + " ");
}
}
}
JavaScript
// JavaScript code to find duplicates in an array
// using auxiliary array
function findDuplicates(arr) {
const n = arr.length;
const freqArr = new Array(n).fill(0);
const result = [];
// Step 2: Iterate through the array and count element
// frequencies
for (const num of arr) {
freqArr[num]++;
}
// Step 3: Iterate through all the possible elements to
// check duplicates
for (let i = 0; i < n; i++) {
if (freqArr[i] > 1) {
result.push(i);
}
}
// Step 4: If no duplicates found, add -1 to the result
if (result.length === 0) {
result.push(-1);
}
// Step 6: Return the result array containing duplicate
// elements or -1
return result;
}
// Driver code
const arr = [ 1, 6, 5, 2, 3, 3, 2 ];
const duplicates = findDuplicates(arr);
console.log(duplicates.join(" "));
All of the above approaches require extra space. Please refer to Duplicates in an array in O(n) and by using O(1) extra space.
Find duplicates in O(n) time and O(1) extra space
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem