Find maximum level sum in Binary Tree
Last Updated :
11 Sep, 2023
Given a Binary Tree having positive and negative nodes, the task is to find the maximum sum level in it.
Examples:
Input : 4
/ \
2 -5
/ \ /\
-1 3 -2 6
Output: 6
Explanation :
Sum of all nodes of 0'th level is 4
Sum of all nodes of 1'th level is -3
Sum of all nodes of 0'th level is 6
Hence maximum sum is 6
Input : 1
/ \
2 3
/ \ \
4 5 8
/ \
6 7
Output : 17
This problem is a variation of the maximum width problem. The idea is to do a level order traversal of the tree. While doing traversal, process nodes of different levels separately. For every level being processed, compute the sum of nodes in the level and keep track of the maximum sum.
Below is the implementation of the above idea:
C++
// A queue based C++ program to find maximum sum
// of a level in Binary Tree
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node
{
int data;
struct Node *left, *right;
};
// Function to find the maximum sum of a level in tree
// using level order traversal
int maxLevelSum(struct Node* root)
{
// Base case
if (root == NULL)
return 0;
// Initialize result
int result = root->data;
// Do Level order traversal keeping track of number
// of nodes at every level.
queue<Node*> q;
q.push(root);
while (!q.empty())
{
// Get the size of queue when the level order
// traversal for one level finishes
int count = q.size();
// Iterate for all the nodes in the queue currently
int sum = 0;
while (count--)
{
// Dequeue an node from queue
Node* temp = q.front();
q.pop();
// Add this node's value to current sum.
sum = sum + temp->data;
// Enqueue left and right children of
// dequeued node
if (temp->left != NULL)
q.push(temp->left);
if (temp->right != NULL)
q.push(temp->right);
}
// Update the maximum node count value
result = max(sum, result);
}
return result;
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Driver code
int main()
{
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(8);
root->right->right->left = newNode(6);
root->right->right->right = newNode(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
cout << "Maximum level sum is " << maxLevelSum(root)
<< endl;
return 0;
}
Java
// A queue based Java program to find maximum
// sum of a level in Binary Tree
import java.util.LinkedList;
import java.util.Queue;
class GFG{
// A binary tree node has data, pointer
// to left child and a pointer to right
// child
static class Node
{
int data;
Node left, right;
public Node(int data)
{
this.data = data;
this.left = this.right = null;
}
};
// Function to find the maximum
// sum of a level in tree
// using level order traversal
static int maxLevelSum(Node root)
{
// Base case
if (root == null)
return 0;
// Initialize result
int result = root.data;
// Do Level order traversal keeping
// track of number of nodes at every
// level.
Queue<Node> q = new LinkedList<>();
q.add(root);
while (!q.isEmpty())
{
// Get the size of queue when the
// level order traversal for one
// level finishes
int count = q.size();
// Iterate for all the nodes
// in the queue currently
int sum = 0;
while (count-- > 0)
{
// Dequeue an node from queue
Node temp = q.poll();
// Add this node's value
// to current sum.
sum = sum + temp.data;
// Enqueue left and right children
// of dequeued node
if (temp.left != null)
q.add(temp.left);
if (temp.right != null)
q.add(temp.right);
}
// Update the maximum node
// count value
result = Math.max(sum, result);
}
return result;
}
// Driver code
public static void main(String[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
System.out.println("Maximum level sum is " +
maxLevelSum(root));
}
}
// This code is contributed by sanjeev2552
Python3
# A queue based Python3 program to find
# maximum sum of a level in Binary Tree
from collections import deque
# A binary tree node has data, pointer
# to left child and a pointer to right
# child
class Node:
def __init__(self, key):
self.data = key
self.left = None
self.right = None
# Function to find the maximum sum
# of a level in tree
# using level order traversal
def maxLevelSum(root):
# Base case
if (root == None):
return 0
# Initialize result
result = root.data
# Do Level order traversal keeping
# track of number
# of nodes at every level.
q = deque()
q.append(root)
while (len(q) > 0):
# Get the size of queue when the
# level order traversal for one
# level finishes
count = len(q)
# Iterate for all the nodes in
# the queue currently
sum = 0
while (count > 0):
# Dequeue an node from queue
temp = q.popleft()
# Add this node's value to current sum.
sum = sum + temp.data
# Enqueue left and right children of
# dequeued node
if (temp.left != None):
q.append(temp.left)
if (temp.right != None):
q.append(temp.right)
count -= 1
# Update the maximum node count value
result = max(sum, result)
return result
# Driver code
if __name__ == '__main__':
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(8)
root.right.right.left = Node(6)
root.right.right.right = Node(7)
# Constructed Binary tree is:
# 1
# / \
# 2 3
# / \ \
# 4 5 8
# / \
# 6 7
print("Maximum level sum is", maxLevelSum(root))
# This code is contributed by mohit kumar 29
C#
// A queue based C# program to find maximum
// sum of a level in Binary Tree
using System;
using System.Collections.Generic;
class GFG
{
// A binary tree node has data, pointer
// to left child and a pointer to right
// child
public
class Node
{
public
int data;
public
Node left, right;
public Node(int data)
{
this.data = data;
this.left = this.right = null;
}
};
// Function to find the maximum
// sum of a level in tree
// using level order traversal
static int maxLevelSum(Node root)
{
// Base case
if (root == null)
return 0;
// Initialize result
int result = root.data;
// Do Level order traversal keeping
// track of number of nodes at every
// level.
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
while (q.Count != 0)
{
// Get the size of queue when the
// level order traversal for one
// level finishes
int count = q.Count;
// Iterate for all the nodes
// in the queue currently
int sum = 0;
while (count --> 0)
{
// Dequeue an node from queue
Node temp = q.Dequeue();
// Add this node's value
// to current sum.
sum = sum + temp.data;
// Enqueue left and right children
// of dequeued node
if (temp.left != null)
q.Enqueue(temp.left);
if (temp.right != null)
q.Enqueue(temp.right);
}
// Update the maximum node
// count value
result = Math.Max(sum, result);
}
return result;
}
// Driver code
public static void Main(String[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
Console.WriteLine("Maximum level sum is " +
maxLevelSum(root));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// A queue based Javascript program to find maximum
// sum of a level in Binary Tree
// A binary tree node has data, pointer
// to left child and a pointer to right
// child
class Node
{
constructor(data)
{
this.data = data;
this.left = this.right = null;
}
}
// Function to find the maximum
// sum of a level in tree
// using level order traversal
function maxLevelSum(root)
{
// Base case
if (root == null)
return 0;
// Initialize result
let result = root.data;
// Do Level order traversal keeping
// track of number of nodes at every
// level.
let q = [];
q.push(root);
while (q.length!=0)
{
// Get the size of queue when the
// level order traversal for one
// level finishes
let count = q.length;
// Iterate for all the nodes
// in the queue currently
let sum = 0;
while (count-- > 0)
{
// Dequeue an node from queue
let temp = q.shift();
// Add this node's value
// to current sum.
sum = sum + temp.data;
// Enqueue left and right children
// of dequeued node
if (temp.left != null)
q.push(temp.left);
if (temp.right != null)
q.push(temp.right);
}
// Update the maximum node
// count value
result = Math.max(sum, result);
}
return result;
}
// Driver code
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
document.write("Maximum level sum is " +
maxLevelSum(root));
// This code is contributed by unknown2108
</script>
OutputMaximum level sum is 17
Complexity Analysis:
Time Complexity: O(N) where N is the total number of nodes in the tree.
In level order traversal, every node of the tree is processed once, and hence the complexity due to the level order traversal is O(N) if there are total N nodes in the tree. Also, while processing every node, we are maintaining the sum at each level, however, this does not affect the overall time complexity. Therefore, the time complexity is O(N).
Auxiliary Space: O(w) where w is the maximum width of the tree.
In level order traversal, a queue is maintained whose maximum size at any moment can go up to the maximum width of the binary tree.
Using Recursion Without Queue:-
- We will use recursion and do any dfs of the tree.
- As in dfs we will move downwards of the tree so while moving we will take care of the level of the tree
- We will add the node value to the current level of the tree
- In the end we will return the maximum sum from all level
Implementation:-
- We will start traversal by level 0 that is from root
- From root we will move downwards using recursion and while moving we will increase the level of the tree by +1.
- We will take a unordered_map to store the sum of the current level
- In the end we will return the maximum value from the map.
C++
// A queue based C++ program to find maximum sum
// of a level in Binary Tree
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node
{
int data;
struct Node *left, *right;
};
//function to get sum or each level
void dfs(Node* root,int level,unordered_map<int,int> &mm)
{
//base condition
if(!root)return;
//adding root value to its level sum
mm[level]+=root->data;
//increasing level
level++;
//moving left
dfs(root->left,level,mm);
//moving right
dfs(root->right,level,mm);
}
// Function to find the maximum sum of a level in tree
// using level order traversal
int maxLevelSum(struct Node* root)
{
// Base case
if (root == NULL)
return 0;
//map to store sum of each level
unordered_map<int,int> mm;
//calling function
dfs(root,0,mm);
//variable to store answer
int result = INT_MIN;
//iterating over map
for(auto x:mm)result = max(x.second,result);
return result;
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Driver code
int main()
{
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(8);
root->right->right->left = newNode(6);
root->right->right->right = newNode(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
cout << "Maximum level sum is " << maxLevelSum(root)
<< endl;
return 0;
}
//code contributed by shubhamrajput6156
Java
import java.util.*;
// A binary tree node has data, a pointer to the left child,
// and a pointer to the right child
class Node {
int data;
Node left, right;
// Constructor to create a new node
Node(int data) {
this.data = data;
left = right = null;
}
}
class GFG {
// Function to get the sum for each level
static void dfs(Node root, int level, Map<Integer, Integer> mm) {
// Base condition
if (root == null) return;
// Adding the root value to its level sum
mm.put(level, mm.getOrDefault(level, 0) + root.data);
// Increasing level
level++;
// Moving left
dfs(root.left, level, mm);
// Moving right
dfs(root.right, level, mm);
}
// Function to find the maximum sum of a level in
// the tree using level order traversal
static int maxLevelSum(Node root) {
// Base case
if (root == null) return 0;
// Map to store the sum of each level
Map<Integer, Integer> mm = new HashMap<>();
// Calling the dfs function
dfs(root, 0, mm);
// Variable to store the answer
int result = Integer.MIN_VALUE;
// Iterating over the map
for (Map.Entry<Integer, Integer> entry : mm.entrySet()) {
result = Math.max(entry.getValue(), result);
}
return result;
}
// Driver code
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
// Constructed binary tree is:
// 1
// / \
// 2 3
// / \ \
// 4 5 8
// / \
// 6 7
System.out.println("Maximum level sum is " + maxLevelSum(root));
}
}
Python3
# A binary tree node has data, left and right pointers
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Function to get sum of each level
def dfs(root, level, mm):
# Base condition
if not root:
return
# Adding root value to its level sum
mm[level] = mm.get(level, 0) + root.data
# Increasing level
level += 1
# Moving left
dfs(root.left, level, mm)
# Moving right
dfs(root.right, level, mm)
# Function to find the maximum sum of a level in the tree
def maxLevelSum(root):
# Base case
if not root:
return 0
# Map to store the sum of each level
mm = {}
# Calling the function to calculate the sum of each level
dfs(root, 0, mm)
# Variable to store the answer
result = float('-inf')
# Iterating over the map to find the maximum sum
for val in mm.values():
result = max(result, val)
return result
# Helper function to allocate a new node with the given data and NULL left and right pointers
def newNode(data):
node = Node(data)
return node
# Driver code
if __name__ == "__main__":
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
root.right.right = newNode(8)
root.right.right.left = newNode(6)
root.right.right.right = newNode(7)
"""
Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7
"""
print("Maximum level sum is", maxLevelSum(root))
C#
using System;
using System.Collections.Generic;
class Node
{
public int data;
public Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
public class MainClass
{
// Function to get sum of each level
static void DFS(Node root, int level, Dictionary<int, int> mm)
{
// Base condition
if (root == null)
return;
// Adding root value to its level sum
if (mm.ContainsKey(level))
mm[level] += root.data;
else
mm[level] = root.data;
// Increasing level
level++;
// Moving left
DFS(root.left, level, mm);
// Moving right
DFS(root.right, level, mm);
}
// Function to find the maximum sum of a level in the tree
static int MaxLevelSum(Node root)
{
// Base case
if (root == null)
return 0;
// Dictionary to store the sum of each level
Dictionary<int, int> mm = new Dictionary<int, int>();
// Calling the function to calculate the sum of each level
DFS(root, 0, mm);
// Variable to store the answer
int result = int.MinValue;
// Iterating over the dictionary to find the maximum sum
foreach (var val in mm.Values)
{
result = Math.Max(result, val);
}
return result;
}
// Helper function to allocate a new node with the given data and NULL left and right pointers
static Node NewNode(int data)
{
Node node = new Node(data);
return node;
}
// Driver code
public static void Main(string[] args)
{
Node root = NewNode(1);
root.left = NewNode(2);
root.right = NewNode(3);
root.left.left = NewNode(4);
root.left.right = NewNode(5);
root.right.right = NewNode(8);
root.right.right.left = NewNode(6);
root.right.right.right = NewNode(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
Console.WriteLine("Maximum level sum is " + MaxLevelSum(root));
}
}
JavaScript
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Function to get sum of each level
function dfs(root, level, mm) {
// Base condition
if (!root) {
return;
}
// Adding root value to its level sum
mm[level] = (mm[level] || 0) + root.data;
// Increasing level
level++;
// Moving left
dfs(root.left, level, mm);
// Moving right
dfs(root.right, level, mm);
}
// Function to find the maximum sum of a level in the tree
function maxLevelSum(root) {
// Base case
if (!root) {
return 0;
}
// Object to store the sum of each level
const mm = {};
// Calling the function to calculate the sum of each level
dfs(root, 0, mm);
// Variable to store the answer
let result = Number.MIN_SAFE_INTEGER;
// Iterating over the object to find the maximum sum
for (let val of Object.values(mm)) {
result = Math.max(result, val);
}
return result;
}
// Helper function to allocate a new node with the given data
// and NULL left and right pointers
function newNode(data) {
return new Node(data);
}
// Driver code
const root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right.right = newNode(8);
root.right.right.left = newNode(6);
root.right.right.right = newNode(7);
/*
Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7
*/
console.log("Maximum level sum is", maxLevelSum(root));
Output:- Maximum level sum is 17
Time Complexity:- O(N)
Space Complexity:- O(H) where H is height of tree
Similar Reads
Find Maximum Level Sum in Binary Tree using Recursion
Given a Binary Tree having positive and negative nodes, the task is to find the maximum sum level in it and print the maximum sum.Examples: Input: 4 / \ 2 -5 / \ / \ -1 3 -2 6 Output: 6 Sum of all nodes of the 1st level is 4. Sum of all nodes of the 2nd level is -3. Sum of all nodes of the 3rd level
10 min read
Find maximum vertical sum in binary tree
Given a binary tree, find the maximum vertical level sum in binary tree.Examples: Input : 3 / \ 4 6 / \ / \ -1 -2 5 10 \ 8 Output : 14Vertical level having nodes 6 and 8 has maximumvertical sum 14. Input : 1 / \ 5 8 / \ \ 2 -6 3 \ / -1 -4 \ 9Output : 4 A simple solution is to first find vertical lev
9 min read
Find the sum of leafs at maximum level
Given a binary tree containing n nodes. The task is to find the sum of all the leaf nodes present at maximum level.Examples: Input: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ 8 9 Output: 17 Leaf nodes 8 and 9 are at maximum level. Their sum = (8 + 9) = 17. Input: 5 / \ 8 13 / 4 Output: 4 Approach: Perform iterat
9 min read
Find the maximum sum leaf to root path in a Binary Tree
Given a Binary Tree, the task is to find the maximum sum path from a leaf to a root.Example : Input: Output: 60Explanantion: There are three leaf to root paths 20->30->10, 5->30->10 and 15->10. The sums of these three paths are 60, 45 and 25 respectively. The maximum of them is 60 and
15+ min read
Maximum Path Sum in a Binary Tree
Given a binary tree, the task is to find the maximum path sum. The path may start and end at any node in the tree.Example: Input: Output: 42Explanation: Max path sum is represented using green colour nodes in the above binary tree.Input: Output: 31Explanation: Max path sum is represented using green
8 min read
Maximum spiral sum in Binary Tree
Given a binary tree containing n nodes. The task is to find the maximum sum obtained when the tree is spirally traversed. In spiral traversal one by one all levels are being traversed with the root level traversed from right to left, then the next level from left to right, then further next level fr
9 min read
Maximum parent children sum in Binary tree
Given a Binary Tree, find the maximum sum in a binary tree by adding the parent with its children. Exactly three Node needs to be added. If the tree does not have a node with both of its children as not NULL, return 0. We simply traverse the tree and find the Node that has the maximum sum. We need t
5 min read
Print all K-sum levels in a Binary Tree
Given a Binary Tree and an integer K where the tree has positive and negative nodes, the task is to print the elements of the level whose sum equals K. If no such result exists, then print "Not Possible". Examples: Input: -10 / \ 2 -3 / \ \ 4 15 -6 / \ / 7 -8 9 K = 13 Output: 4 15 -6 Explanation: Le
8 min read
Find the level with maximum setbit count in given Binary Tree
Given a binary tree having N nodes, the task is to find the level having the maximum number of setbits. Note: If two levels have same number of setbits print the one which has less no of nodes. If nodes are equal print the first level from top to bottom Examples: Input: 2 / \ 5 3 / \6 1Output: 2Expl
11 min read
Odd level sum of given Binary Tree
Given a binary tree, write a function that takes the root node and updates the original tree in such a way every node that is present at an odd level gets updated as the sum of the node's value and its grandparent's value. Examples: Input: Consider a binary tree having values {3, 2, 5, 1, 4, NULL, 7
8 min read