Open In App

Find original Array from given Array where each element is sum of prefix and postfix sum

Last Updated : 06 Nov, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] of length N, where arr is derived from an array nums[] which is lost. Array arr[] is derived as: 

arr[i] = (nums[0] + nums[1] + ... + nums[i]) + (nums[i] + nums[i+1] + ... + nums[N-1]). 

The task is to find nums[] array of length N.

Examples:

Input: N = 4, arr[] = {9, 10, 11, 10}
Output: {1, 2, 3, 2}
Explanation: If nums[] = {1, 2, 3, 2}, then according to above definition
arr[0] = (nums[0]) + (nums[0] + nums[1] + nums[2] + nums[3]) = 1 + 1 + 2 + 3 + 2 = 9
arr[1] = (nums[0] + nums[1]) + (nums[1] + nums[2] + nums[3]) = 1 + 2 + 2 + 3 + 2 = 10
arr[2] = (nums[0] + nums[1] + nums[2]) + (nums[2] + nums[3]) = 1 + 2 + 3 + 3 + 2 = 11
arr[3] = (nums[0] + nums[1] + nums[2] + nums[3]) + (nums[3]) = 1 + 2 + 3 + 2 + 2 = 10

Input: N = 2, arr[] = [25, 20]
Output: [10, 5]

 

Approach: Follow the below idea to solve the problem:

Suppose nums[] contains [a1, a2, a3, ..., aN] 
Then, sum = a1 + a2 + a3 + . . . + aN.
We are given 
b1 = a1 + a1 + a2 + . . . + aN = a1 + sum .....(1)
Similarly,  
b2 = a1 + a2 + a2 + . . . + aN = a2 + sum    .....(2)
. . .  (so on) and in last 
b1 = a1 + a2 + a3 + . . . + aN + aN = aN + sum .....(N)
where [b1, b2, b3 , . . ., bN] are elements of arr[] and,  
total = b1 + b2 + b3 + . . . + bN

Adding all equation (1) + (2) + (3) + .... + (N) we will get

b1 + b2 + b3 + . . . + bN = (a1 + sum) + (a2 + sum) + . . . + (aN + sum)
total = (a1 + a1 + a2 + . . . + aN) + (N * sum)
total = (sum) + (N * sum)
total = (N + 1) * sum

Now find the value of sum variable after that simply:
a1 = (b1 - sum), a2 = (b2 - sum), . . ., aN = (bN - sum)

Using the above idea follow the below steps to implement the code:

  • First of all, try to store the sum of elements of arr[] in a variable let's say total
  • Using the formula (N + 1) * sum = total, we will get the value of variable sum which denotes the sum of elements present in the nums[] array.
  • At last traverse N times to find nums[0] = arr[0] - sum, nums[1] = arr[1] - sum and so on.
  • Return the array and print it.

Below is the implementation of the above approach:

C++
// C++ Algorithm for the above approach

#include <iostream>
#include <vector>
using namespace std;

// Function to find the original
// array nums[]
vector<int> findOrgArray(vector<int> arr, int N)
{
    // Total variable stores the sum of
    // elements of arr[]
    int total = 0;
    for (int val : arr)
        total += val;

    // Sum variable stores the sum of
    // elements of nums[]
    int sum = (total / (N + 1));
    vector<int> v;

    // Traversing to find the elements
    // of nums[]
    for (int i = 0; i < N; i++) {
        int val = arr[i] - sum;
        v.push_back(val);
    }

    // Returning nums[]
    return v;
}

int main()
{

    int N = 4;
    vector<int> arr = { 9, 10, 11, 10 };

    vector<int> v = findOrgArray(arr, N);
    for (auto val : v)
        cout << val << " ";
    return 0;
}
Java
// Java algorithm of the above approach

import java.util.*;

class GFG {

    // Driver Code
    public static void main(String[] args)
    {
        int N = 4;
        int[] arr = { 9, 10, 11, 10 };
        List<Integer> nums = findOrgArray(arr, N);
        for (int x : nums)
            System.out.print(x + " ");
    }

    // Function to find the original
    // array nums[]
    public static List<Integer> findOrgArray(int[] arr,
                                             int N)
    {

        // Total variable stores the sum of
        // elements of arr[]
        int total = 0;
        for (int val : arr)
            total += val;

        // Sum variable stores the sum of
        // elements of nums[]
        int sum = (total / (N + 1));
        List<Integer> nums = new ArrayList<>();

        // Traversing to find the elements
        // of nums[]
        for (int i = 0; i < N; i++) {
            int val = arr[i] - sum;
            nums.add(val);
        }

        // Returning nums[]
        return nums;
    }
}
Python3
# python3 Algorithm for the above approach
    
# Function to find the original
# array nums[]
def findOrgArray(arr, N) :
    
    # Total variable stores the sum of
    # elements of arr[]
    total = 0
    for i in arr :
        total+= i

    # Sum variable stores the sum of
    # elements of nums[]
    sum = int(total / (N + 1));
    v = []

    # Traversing to find the elements
    # of nums[]
    for i in range (N) :
        val = arr[i] - sum
        v.append(val)

    # Returning nums[]
    return v

# Driver Code
if __name__ == "__main__" :
    
    N = 4
    arr = [ 9, 10, 11, 10 ]

    v = findOrgArray(arr, N)
    for val in v :
        print(val,end=' ')

# this code is contributed by aditya942003patil
C#
// C# program to implement
// the above approach
using System;
using System.Collections.Generic;

public class GFG
{

  // Function to find the original
  // array nums[]
  public static List<int> findOrgArray(int[] arr,
                                       int N)
  {

    // Total variable stores the sum of
    // elements of arr[]
    int total = 0;
    //for (int x = 0;  x < arr.count; x++)
    foreach (int val in arr)
      total += val;

    // Sum variable stores the sum of
    // elements of nums[]
    int sum = (total / (N + 1));
    List<int> nums = new List<int>();

    // Traversing to find the elements
    // of nums[]
    for (int i = 0; i < N; i++) {
      int val = arr[i] - sum;
      nums.Add(val);
    }

    // Returning nums[]
    return nums;
  }

  // Driver Code
  public static void Main(String []args)
  {
    int N = 4;
    int[] arr = { 9, 10, 11, 10 };
    List<int> nums = findOrgArray(arr, N);
    for (int x = 0;  x < nums.Count; x++)
      Console.Write(nums[x] + " ");
  }
}

// This code is contributed by sanjoy_62.
JavaScript
<script>

// Function to find the original
// array nums[]
function findOrgArray(arr, N)
{
    // Total variable stores the sum of
    // elements of arr[]
    let total = 0;
    for (let i = 0; i < N; i++)
        total += arr[i];

    // Sum variable stores the sum of
    // elements of nums[]
    let sum = (total / (N + 1));
    let v= new Array(N);

    // Traversing to find the elements
    // of nums[]
    for (let i = 0; i < N; i++) {
         v[i] = arr[i] - sum;
        
    }

    // Returning nums[]
    return v;
}
   
    let N = 4;
    let arr = [ 9, 10, 11, 10 ];

    let v = findOrgArray(arr, N);
    for (let i = 0; i < N; i++)
        document.write(v[i]+ " ");
        
        // This code is contributed by satwik4409.
    </script>

Output
1 2 3 2 

Time Complexity: O(N)
Auxiliary Space: O(N), to further reduce it to O(1), store the value in the same given array arr[] rather than storing it in a new array.

Another Approach:

  1. Initialize a variable named "total" to 0.
  2. Traverse the input array "arr" using a range-based for loop.
    a. For each element "val" in "arr", add "val" to the "total" variable.
  3. Compute the sum of the original array "nums" using the formula: sum = total / (N + 1).
  4. Traverse the input array "arr" again using a for loop with index "i" from 0 to N-1.
    a. For each element in "arr", subtract "sum" from it and store the result back into "arr[i]". This effectively undoes the modification made to "arr" and recovers the original array "nums".

Below is the implementation of the above approach:

C++
#include <iostream>
#include <vector>
using namespace std;

// Function to find the original array nums[]
void findOrgArray(vector<int>& arr, int N)
{
    // Total variable stores the sum of elements of arr[]
    int total = 0;
    for (int val : arr)
        total += val;

    // Sum variable stores the sum of elements of nums[]
    int sum = (total / (N + 1));

    // Traversing to find the elements of nums[]
    for (int i = 0; i < N; i++) {
        arr[i] = arr[i] - sum;
    }
}

int main()
{
    int N = 4;
    vector<int> arr = { 9, 10, 11, 10 };

    findOrgArray(arr, N);
    for (auto val : arr)
        cout << val << " ";
    return 0;
}
Java
import java.util.*;
import java.io.*;

public class GFG {
    // Function to find the original array nums[]
    static void findOrgArray(List<Integer> arr, int N) {
        // Total variable stores the sum of elements of arr[]
        int total = 0;
        for (int val : arr) {
            total += val;
        }

        // Sum variable stores the sum of elements of nums[]
        int sum = total / (N + 1);

        // Traversing to find the elements of nums[]
        for (int i = 0; i < N; i++) {
            arr.set(i, arr.get(i) - sum);
        }
    }
    // Driver Code
    public static void main(String[] args) {
        int N = 4;
        List<Integer> arr = new ArrayList<>();
        arr.add(9);
        arr.add(10);
        arr.add(11);
        arr.add(10);

        findOrgArray(arr, N);
        for (int val : arr) {
            System.out.print(val + " ");
        }
    }
}
Python3
#Function to find the original array nums[]
def find_org_array(arr, N):
  total = 0 #Total variable stores the sum of elements of arr[]
  for val in arr:
    total += val
  #Sum variable stores the sum of elements of nums[]
  sum = int(total / (N + 1))
  #Traversing to find the elements of nums[]
  for i in range(N):
    arr[i] -= sum
  return arr

#Driver Code
arr=[9, 10, 11, 10]
n=4
#function call
arr=find_org_array(arr,n)
for val in arr:
  print(val,end=" ")
C#
using System;
using System.Collections.Generic;

class Program
{
    // Function to find the original array nums[]
    static void FindOrgArray(List<int> arr, int N)
    {
        // Total variable stores the sum of elements of arr[]
        int total = 0;
        foreach (int val in arr)
            total += val;

        // Sum variable stores the sum of elements of nums[]
        int sum = total / (N + 1);

        // Traversing to find the elements of nums[]
        for (int i = 0; i < N; i++)
        {
            arr[i] = arr[i] - sum;
        }
    }

    static void Main()
    {
        int N = 4;
        List<int> arr = new List<int> { 9, 10, 11, 10 };

        FindOrgArray(arr, N);

        foreach (var val in arr)
            Console.Write(val + " ");
    }
}
JavaScript
// Function to find the original array nums[]
function findOrgArray(arr, N) {
    
    // Total variable stores the sum of elements of arr[]
    let total = 0;
    for (let val of arr) {
        total += val;
    }
    
    // Sum variable stores the sum of elements of nums[]
    let sum = Math.floor(total / (N + 1));
    
    
    // Traversing to find the elements of nums[]
    for (let i = 0; i < N; i++) {
        arr[i] = arr[i] - sum;
    }
}

// Driver code
let N = 4;
let arr = [9, 10, 11, 10];
findOrgArray(arr, N);
for (let val of arr) {
    console.log(val + " ");
}

Output
1 2 3 2 

Time Complexity: O(n)
Auxiliary Space: O(1)


Next Article

Similar Reads