Find pair of rows in a binary matrix that has maximum bit difference
Last Updated :
28 Mar, 2023
Given a Binary Matrix. The task is to find the pair of row in the Binary matrix that has maximum bit difference Examples:
Input: mat[][] = {{1, 1, 1, 1},
{1, 1, 0, 1},
{0, 0, 0, 0}};
Output : (1, 3)
Bit difference between row numbers 1 and 3
is maximum with value 4. Bit difference
between 1 and 2 is 1 and between 2 and 3
is 3.
Input: mat[][] = {{1 ,1 ,1 ,1 }
{1 ,0, 1 ,1 }
{0 ,1 ,0 ,0 }
{0, 0 ,0 ,0 }}
Output : (2, 3)
Bit difference between rows 2 and 3 is
maximum which is 4.
Input: mat[][] = {{1 ,0 ,1 ,1 }
{1 ,1 ,1 ,1 }
{0 ,1 ,0 ,1 }
{1, 0 ,0 ,0 }}
Output : (1, 3) or (2 ,4 ) or (3 ,4 )
They all are having maximum bit difference
that is 3
Simple solution of this problem is that pick each row of binary matrix one -by -one and compute maximum bit difference with rest of the rows of matrix .at last return rows those have maximum bit difference .
An Efficient solution using Trie Data Structure. Below is algorithm.
1). Create an empty Trie. Every node of Trie contains
two children for 0 and 1 bits.
2). Insert First Row of Binary matrix into Trie
3).Traverse rest of the rows of given Binary Matrix
a). For Each Row First we search maximum bit difference
with rows that we insert before that in Trie and
count bit difference
b). For every search we update maximum bit_diff count
if needed else not store pair of index that have
maximum bit difference
c). At Last Print Pair
Implementation:
CPP
// C++ program to Find Pair of row in Binary matrix
// that has maximum Bit difference
#include<bits/stdc++.h>
using namespace std;
// Maximum size of matrix
const int MAX = 100;
struct TrieNode
{
int leaf; //store index of visited row
struct TrieNode *Child[2];
};
// Utility function to create a new Trie node
TrieNode * getNode()
{
TrieNode * newNode = new TrieNode;
newNode->leaf = 0;
newNode->Child[0] = newNode->Child[1] = NULL;
return newNode;
}
// utility function insert new row in trie
void insert(TrieNode *root, int Mat[][MAX], int n,
int row_index)
{
TrieNode * temp = root;
for (int i=0; i<n; i++)
{
// Add a new Node into trie
if(temp->Child[ Mat[row_index][i] ] == NULL)
temp->Child[ Mat[row_index][i] ] = getNode();
// move current node to point next node in trie
temp = temp->Child[ Mat[row_index][i] ];
}
// store index of currently inserted row
temp->leaf = row_index +1 ;
}
// utility function calculate maximum bit difference of
// current row with previous visited row of binary matrix
pair<int, int> maxBitDiffCount(TrieNode * root,
int Mat[][MAX], int n, int row_index)
{
TrieNode * temp = root;
int count = 0;
// Find previous visited row of binary matrix
// that has starting bit same as current row
for (int i= 0 ; i < n ; i++)
{
// First look for same bit in trie
if (temp->Child[ Mat[row_index][i] ] != NULL)
temp = temp->Child[ Mat[row_index][i] ];
// Else looking for opposite bit
else if (temp->Child[1 - Mat[row_index][i]] != NULL)
{
temp = temp->Child[1- Mat[row_index][i]];
count++;
}
}
int leaf_index = temp->leaf;
int count1 = 0 ;
temp = root;
// Find previous visited row of binary matrix
// that has starting bit opposite to current row
for (int i= 0 ; i < n ; i++)
{
// First looking for opposite bit
if (temp->Child[ 1 - Mat[row_index][i] ] !=NULL)
{
temp = temp->Child[ 1- Mat[row_index][i] ];
count1++;
}
// Else look for same bit in trie
else if (temp->Child[ Mat[row_index][i] ] != NULL)
temp = temp->Child[ Mat[row_index][i] ];
}
pair <int ,int> P = count1 > count ?
make_pair(count1, temp->leaf):
make_pair(count, leaf_index);
// return pair that contain both bit difference
// count and index of row with we get bit
// difference
return P;
}
// Returns maximum bit difference pair of row
void maxDiff( int mat[][MAX], int n, int m)
{
TrieNode * root = getNode();
// Insert first matrix row in trie
insert(root, mat, m, 0);
int max_bit_diff = INT_MIN;
pair <int ,int> P, temp ;
// Traverse all rest row of binary matrix
for (int i = 1 ; i < n; i++)
{
// compute bit difference with previous visited
// rows of matrix
temp = maxBitDiffCount(root, mat, m ,i);
// update maximum bit difference
if (max_bit_diff < temp.first )
{
max_bit_diff = temp.first;
P = make_pair( temp.second, i+1);
}
// insert current row value into Trie
insert(root, mat, m, i );
}
// print maximum bit difference pair in row
cout << "(" << P.first <<", "<< P.second << ")";
}
// Driver program
int main()
{
int mat[][MAX] = {{0 ,1 ,0 ,1, 0 },
{1, 0, 1 ,1 ,0 },
{0 ,0 ,1 ,0, 1 }
};
maxDiff(mat, 3, 5) ;
return 0;
}
Java
// Importing required library
import java.util.*;
class Pair
{
int first,second;
Pair(int first,int second)
{
this.first = first;
this.second = second;
}
}
public class Main {
// Maximum size of matrix
static final int MAX = 100;
static class TrieNode {
int leaf; // store index of visited row
TrieNode[] Child = new TrieNode[2];
// Constructor
TrieNode() {
this.leaf = 0;
this.Child[0] = null;
this.Child[1] = null;
}
}
// Utility function to create a new Trie node
static TrieNode getNode() {
TrieNode newNode = new TrieNode();
return newNode;
}
// utility function insert new row in trie
static void insert(TrieNode root, int[][] Mat, int n, int row_index) {
TrieNode temp = root;
for (int i = 0; i < n; i++) {
// Add a new Node into trie
if (temp.Child[(Mat[row_index][i])] == null)
temp.Child[(Mat[row_index][i])] = getNode();
// move current node to point next node in trie
temp = temp.Child[(Mat[row_index][i])];
}
// store index of currently inserted row
temp.leaf = row_index + 1;
}
// utility function calculate maximum bit difference of
// current row with previous visited row of binary matrix
static Pair maxBitDiffCount(TrieNode root, int[][] Mat, int n, int row_index) {
TrieNode temp = root;
int count = 0;
// Find previous visited row of binary matrix
// that has starting bit same as current row
for (int i = 0; i < n; i++) {
// First look for same bit in trie
if (temp.Child[(Mat[row_index][i])] != null)
temp = temp.Child[(Mat[row_index][i])];
// Else looking for opposite bit
else if (temp.Child[1 - Mat[row_index][i]] != null) {
temp = temp.Child[1 - Mat[row_index][i]];
count++;
}
}
int leaf_index = temp.leaf;
int count1 = 0;
temp = root;
// Find previous visited row of binary matrix
// that has starting bit opposite to current row
for (int i = 0; i < n; i++) {
// First looking for opposite bit
if (temp.Child[1 - Mat[row_index][i]] != null) {
temp = temp.Child[1 - Mat[row_index][i]];
count1++;
}
// Else look for same bit in trie
else if (temp.Child[(Mat[row_index][i])] != null)
temp = temp.Child[(Mat[row_index][i])];
}
Pair P = count1 > count ?
new Pair(count1, temp.leaf) :
new Pair(count, leaf_index);
// return pair that contain both bit difference
// count and index of row with we get bit
// difference
return P;
}
// Returns maximum bit difference pair of row
static void maxDiff(int[][] mat, int n, int m) {
TrieNode root = getNode();
// Insert first matrix row in trie
insert(root, mat, m, 0);
int max_bit_diff = Integer.MIN_VALUE;
Pair P=null;Pair temp=null;
// Traverse all rest row of binary matrix
for (int i = 1; i < n; i++) {
// compute bit difference with previous visited
// rows of matrix
temp = maxBitDiffCount(root, mat, m, i);
// update maximum bit difference
if (max_bit_diff < temp.first) {
max_bit_diff = temp.first;
P = new Pair(temp.second, i + 1);
}
// insert current row value into Trie
insert(root, mat, m, i);
}
System.out.println("("+P.first+", "+P.second+")");
}
public static void main(String[] args) {
int mat[][] = {{0 ,1 ,0 ,1, 0 },
{1, 0, 1 ,1 ,0 },
{0 ,0 ,1 ,0, 1 }
};
maxDiff(mat, 3, 5) ;
}
}
Python3
import sys
# Maximum size of matrix
MAX = 100
class TrieNode:
def __init__(self):
self.leaf = 0 # store index of visited row
self.Child = [None] * 2
# Utility function to create a new Trie node
def getNode():
newNode = TrieNode()
newNode.leaf = 0
newNode.Child = [None] * 2
return newNode
# utility function insert new row in trie
def insert(root, Mat, n, row_index):
temp = root
for i in range(n):
# Add a new Node into trie
if temp.Child[(Mat[row_index][i])] == None:
temp.Child[(Mat[row_index][i])] = getNode()
# move current node to point next node in trie
temp = temp.Child[(Mat[row_index][i])]
# store index of currently inserted row
temp.leaf = row_index + 1
# utility function calculate maximum bit difference of
# current row with previous visited row of binary matrix
def maxBitDiffCount(root, Mat, n, row_index):
temp = root
count = 0
# Find previous visited row of binary matrix
# that has starting bit same as current row
for i in range(n):
# First look for same bit in trie
if temp.Child[(Mat[row_index][i])] != None:
temp = temp.Child[(Mat[row_index][i])]
# Else looking for opposite bit
elif temp.Child[1 - Mat[row_index][i]] != None:
temp = temp.Child[1 - Mat[row_index][i]]
count += 1
leaf_index = temp.leaf
count1 = 0
temp = root
# Find previous visited row of binary matrix
# that has starting bit opposite to current row
for i in range(n):
# First looking for opposite bit
if temp.Child[1 - Mat[row_index][i]] != None:
temp = temp.Child[1 - Mat[row_index][i]]
count1 += 1
# Else look for same bit in trie
elif temp.Child[(Mat[row_index][i])] != None:
temp = temp.Child[(Mat[row_index][i])]
P = (count1, temp.leaf) if count1 > count else (count, leaf_index)
# return pair that contain both bit difference
# count and index of row with we get bit
# difference
return P
# Returns maximum bit difference pair of row
def maxDiff(mat, n, m):
root = getNode()
# Insert first matrix row in trie
insert(root, mat, m, 0)
max_bit_diff = -sys.maxsize
P, temp = None, None
# Traverse all rest row of binary matrix
for i in range(1, n):
# compute bit difference with previous visited
# rows of matrix
temp = maxBitDiffCount(root, mat, m, i)
# update maximum bit difference
if max_bit_diff < temp[0]:
max_bit_diff = temp[0]
P = (temp[1], i+1)
# insert current row value into Trie
insert(root, mat, m, i)
# print maximum bit difference pair in row
print(f"({P[0]}, {P[1]})")
# Driver program
if __name__ == "__main__":
mat = [[0, 1, 0 ,1, 0 ],
[1, 0, 1 ,1 ,0 ],
[0 ,0 ,1 ,0, 1 ]
]
maxDiff(mat, 3, 5)
# This code is contributed by Prince Kumar
C#
// C# program to Find Pair of row in Binary matrix
// that has maximum Bit difference
using System;
public class TrieNode
{
public int Leaf;//store index of visited row
public TrieNode[] Child;
public TrieNode()
{
Leaf = 0;
Child = new TrieNode[2];
Child[0] = Child[1] = null;
}
}
public class MaxBitDifference
{
// Maximum size of matrix
private const int MAX = 100;
// Utility function to create a new Trie node
private static TrieNode GetNode()
{
return new TrieNode();
}
// utility function insert new row in trie
private static void Insert(TrieNode root, int[,] mat, int n, int rowIndex)
{
var temp = root;
for (var i = 0; i < n; i++)
{
// Add a new Node into trie
if (temp.Child[(mat[rowIndex, i])] == null)
{
temp.Child[(mat[rowIndex, i])] = GetNode();
}
// move current node to point next node in trie
temp = temp.Child[(mat[rowIndex, i])];
}
// store index of currently inserted row
temp.Leaf = rowIndex + 1;
}
// utility function calculate maximum bit difference of
// current row with previous visited row of binary matrix
private static Tuple<int, int> MaxBitDiffCount(TrieNode root, int[,] mat, int n, int rowIndex)
{
var temp = root;
var count = 0;
// Find previous visited row of binary matrix
// that has starting bit same as current row
for (var i = 0; i < n; i++)
{
// First look for same bit in trie
if (temp.Child[(mat[rowIndex, i])] != null)
{
temp = temp.Child[(mat[rowIndex, i])];
}
// Else looking for opposite bit
else if (temp.Child[1 - mat[rowIndex, i]] != null)
{
temp = temp.Child[1 - mat[rowIndex, i]];
count++;
}
}
var leafIndex = temp.Leaf;
var count1 = 0;
temp = root;
// Find previous visited row of binary matrix
// that has starting bit opposite to current row
for (var i = 0; i < n; i++)
{
// First looking for opposite bit
if (temp.Child[1 - mat[rowIndex, i]] != null)
{
temp = temp.Child[1 - mat[rowIndex, i]];
count1++;
}
// Else look for same bit in trie
else if (temp.Child[(mat[rowIndex, i])] != null)
{
temp = temp.Child[(mat[rowIndex, i])];
}
}
var P = count1 > count ? new Tuple<int, int>(count1, temp.Leaf) : new Tuple<int, int>(count, leafIndex);
// return pair that contain both bit difference
// count and index of row with we get bit
// difference
return P;
}
// Returns maximum bit difference pair of row
public static void MaxDiff(int[,] mat, int n, int m)
{
var root = GetNode();
// Insert first matrix row in trie
Insert(root, mat, m, 0);
var maxBitDiff = int.MinValue;
Tuple<int, int> P = null, temp = null;
// Traverse all rest row of binary matrix
for (var i = 1; i < n; i++)
{
// compute bit difference with previous visited
// rows of matrix
temp = MaxBitDiffCount(root, mat, m, i);
// update maximum bit difference
if (maxBitDiff < temp.Item1)
{
maxBitDiff = temp.Item1;
P = new Tuple<int, int>(temp.Item2, i + 1);
}
// insert current row value into Trie
Insert(root, mat, m, i);
}
// print maximum bit difference pair in row
Console.WriteLine("({0}, {1})", P.Item1, P.Item2);
}
// Driver program
public static void Main()
{
var mat = new int[3, 5] {{0, 1, 0, 1, 0}, {1, 0, 1, 1, 0}, {0, 0, 1, 0, 1}};
MaxDiff(mat, 3, 5);
}
}
JavaScript
// Maximum size of matrix
const MAX = 100;
class TrieNode {
constructor() {
this.leaf = 0; // store index of visited row
this.Child = [null, null];
}
}
// Utility function to create a new Trie node
function getNode() {
const newNode = new TrieNode();
newNode.leaf = 0;
newNode.Child = [null, null];
return newNode;
}
// utility function insert new row in trie
function insert(root, Mat, n, row_index) {
let temp = root;
for (let i = 0; i < n; i++) {
// Add a new Node into trie
if (temp.Child[(Mat[row_index][i])] == null) {
temp.Child[(Mat[row_index][i])] = getNode();
}
// move current node to point next node in trie
temp = temp.Child[(Mat[row_index][i])];
}
// store index of currently inserted row
temp.leaf = row_index + 1;
}
// utility function calculate maximum bit difference of
// current row with previous visited row of binary matrix
function maxBitDiffCount(root, Mat, n, row_index) {
let temp = root;
let count = 0;
// Find previous visited row of binary matrix
// that has starting bit same as current row
for (let i = 0; i < n; i++) {
// First look for same bit in trie
if (temp.Child[(Mat[row_index][i])] != null) {
temp = temp.Child[(Mat[row_index][i])];
}
// Else looking for opposite bit
else if (temp.Child[1 - Mat[row_index][i]] != null) {
temp = temp.Child[1 - Mat[row_index][i]];
count += 1;
}
}
let leaf_index = temp.leaf;
let count1 = 0;
temp = root;
// Find previous visited row of binary matrix
// that has starting bit opposite to current row
for (let i = 0; i < n; i++) {
// First looking for opposite bit
if (temp.Child[1 - Mat[row_index][i]] != null) {
temp = temp.Child[1 - Mat[row_index][i]];
count1 += 1;
}
// Else look for same bit in trie
else if (temp.Child[(Mat[row_index][i])] != null) {
temp = temp.Child[(Mat[row_index][i])];
}
}
let P = count1 > count ? [count1, temp.leaf] : [count, leaf_index];
// return pair that contain both bit difference
// count and index of row with we get bit
// difference
return P;
}
// Returns maximum bit difference pair of row
function maxDiff(mat, n, m) {
const root = getNode();
// Insert first matrix row in trie
insert(root, mat, m, 0);
let max_bit_diff = -Infinity;
let P = null;
let temp = null;
// Traverse all rest row of binary matrix
for (let i = 1; i < n; i++) {
// compute bit difference with previous visited
// rows of matrix
temp = maxBitDiffCount(root, mat, m, i);
// update maximum bit difference
if (max_bit_diff < temp[0]) {
max_bit_diff = temp[0];
P = [temp[1], i + 1];
}
// insert current row value into Trie
insert(root, mat, m, i);
}
// print maximum bit difference pair in row
console.log(`(${P[0]}, ${P[1]})`);
}
// Driver program
const mat = [
[0, 1, 0, 1, 0],
[1, 0, 1, 1, 0],
[0, 0, 1, 0, 1]
];
maxDiff(mat, 3, 5);
Time Complexity:O(n)
Auxiliary Space: O(n)
Similar Reads
Find pair with maximum difference in any column of a Matrix Given a N*N matrix of positive integers. The task is to find the maximum difference between any pair of elements in any column of the matrix. Examples: Input : mat[N][N] = { { 1, 2, 3, 4, 5 }, { 5, 3, 5, 4, 0 }, { 5, 6, 7, 8, 9 }, { 0, 6, 3, 4, 12 }, { 9, 7, 12, 4, 3 }, }; Output : Max difference :
6 min read
Pair with maximum difference in a Matrix Given a NxM matrix with N rows and M columns of positive integers. The task is to find the pair with the maximum difference in the given matrix. Note: Pairs at positions (a, b) and (b, a) are considered equivalent. Examples: Input : mat[N][M] = {{1, 2, 3, 4}, {25, 6, 7, 8}, {9, 10, 11, 12}, {13, 14,
5 min read
Maximum difference of sum of elements in two rows in a matrix Given a matrix of m*n order, the task is to find the maximum difference between two rows Rj and Ri such that i < j, i.e., we need to find maximum value of sum(Rj) - sum(Ri) such that row i is above row j. Examples: Input : mat[5][4] = {{-1, 2, 3, 4}, {5, 3, -2, 1}, {6, 7, 2, -3}, {2, 9, 1, 4}, {2
10 min read
Find minimum K such that difference between any Array pair is not a multiple of K Given an array arr[] of length N. Find a positive integer K such that the difference between any pair of array elements is not a multiple of K. Examples: Input: arr[] = {11, 20, 13}Output: 4?Explanation: The possible differences are A1 ? A2 = 9, A1 ? A3 = 2 , and A2 ? A3 = 7. The least positive inte
7 min read
Find a number with least sum of bit differences from given Array Given an array arr[] and an integer L which represents the number of bits to be considered in bit representation of an array element. The task is to find a positive integer X, such that the sum of the bit difference of all the elements in arr[] with X is minimum. Examples: Input: N = 3, L = 5, arr[]
8 min read
Maximum difference of indices (i, j) such that A[i][j] = 0 in the given matrix Given a matrix of order n*n, the task is to find the maximum value of |i-j| such that Aij = 0. Given matrix must contain at least one 0. Examples: Input: matrix[][] = {{2, 3, 0}, {0, 2, 0}, {0, 1, 1}} Output: 2 mat(0, 2) has a value 0 and difference of index is maximum i.e. 2. Input: matrix[][] = {{
5 min read
Maximize score of Binary Matrix by Flipping a row or column each time Given a Binary matrix of size MxN, the task is to maximize the score of Matrix by making any number of moves (including zero moves), such that, every row is interpreted as a Binary Number, and the score of the matrix is the sum of these binary numbers. A move is defined as choosing any row or column
8 min read
Minimize the maximum of Matrix whose rows and columns are in A.P Given two integers N and M denoting a matrix of size N*M, the task is to form a matrix following the below criteria and make the maximum element as minimum as possible: Elements in each row are in arithmetic progression from left to right.Elements in each column are also in arithmetic progression fr
7 min read
Maximum sum of elements from each row in the matrix Given a matrix, find the maximum sum we can have by selecting just one element from every row. Condition is element selected from nth row must be strictly greater than element from (n-1)th row, else no element must be taken from row. Print the sum if possible else print -1. Examples : Input : 1 2 31
7 min read
Find the minimum difference of 1s between two vertical halves of the given matrix Given a binary square matrix M[][] of size NXN, where N is an even number. The task is to find the minimum difference of frequency of 1s between the first and the second vertical half of M[][]. We can apply the below operations at most once: Choose any one row out of N rows of M[][] and reverse it i
8 min read