Find row with maximum sum in a Matrix
Last Updated :
12 Apr, 2023
Given an N*N matrix. The task is to find the index of a row with the maximum sum. That is the row whose sum of elements is maximum.
Examples:
Input : mat[][] = {
{ 1, 2, 3, 4, 5 },
{ 5, 3, 1, 4, 2 },
{ 5, 6, 7, 8, 9 },
{ 0, 6, 3, 4, 12 },
{ 9, 7, 12, 4, 3 },
};
Output : Row 3 has max sum 35
Input : mat[][] = {
{ 1, 2, 3 },
{ 4, 2, 1 },
{ 5, 6, 7 },
};
Output : Row 3 has max sum 18
The idea is to traverse the matrix row-wise and find the sum of elements in each row and check for every row if current sum is greater than the maximum sum obtained till the current row and update the maximum_sum accordingly.
Algorithm:
- Define a constant N as the number of rows and columns in the matrix.
- Define a function colMaxSum that takes a 2D array of integers mat of size N*N as its input.
- Initialize two variables idx and maxSum to -1 and INT_MIN respectively.
- Traverse the matrix row-wise.
- For each row, calculate the sum of all the elements in that row.
- If the sum of the current row is greater than the current maxSum, update maxSum to be the sum of the current row and set idx to be the index of the current row.
- Return a pair of integers, with the first element being the index of the row with the maximum sum (idx) and the second element being the maximum sum (maxSum).
Pseudocode:
1. N ? number of rows and columns in the matrix
2. function colMaxSum(mat[N][N])
3. idx ? -1
4. maxSum ? INT_MIN
5. for i from 0 to N-1
6. sum ? 0
7. for j from 0 to N-1
8. sum ? sum + mat[i][j]
9. if sum > maxSum
10. maxSum ? sum
11. idx ? i
12. return pair(idx, maxSum)
13. end function
Below is the implementation of the above approach:
C++
// C++ program to find row with
// max sum in a matrix
#include <bits/stdc++.h>
using namespace std;
#define N 5 // No of rows and column
// Function to find the row with max sum
pair<int, int> colMaxSum(int mat[N][N])
{
// Variable to store index of row
// with maximum
int idx = -1;
// Variable to store max sum
int maxSum = INT_MIN;
// Traverse matrix row wise
for (int i = 0; i < N; i++) {
int sum = 0;
// calculate sum of row
for (int j = 0; j < N; j++) {
sum += mat[i][j];
}
// Update maxSum if it is less than
// current sum
if (sum > maxSum) {
maxSum = sum;
// store index
idx = i;
}
}
pair<int, int> res;
res = make_pair(idx, maxSum);
// return result
return res;
}
// Driver code
int main()
{
int mat[N][N] = {
{ 1, 2, 3, 4, 5 }, { 5, 3, 1, 4, 2 },
{ 5, 6, 7, 8, 9 }, { 0, 6, 3, 4, 12 },
{ 9, 7, 12, 4, 3 },
};
pair<int, int> ans = colMaxSum(mat);
cout << "Row " << ans.first + 1 << " has max sum "
<< ans.second;
return 0;
}
Java
// Java program to find row with
// max sum in a matrix
import java.util.ArrayList;
class MaxSum {
public static int N;
static ArrayList<Integer> colMaxSum(int mat[][])
{
// Variable to store index of row
// with maximum
int idx = -1;
// Variable to store maximum sum
int maxSum = Integer.MIN_VALUE;
// Traverse the matrix row wise
for (int i = 0; i < N; i++) {
int sum = 0;
for (int j = 0; j < N; j++) {
sum += mat[i][j];
}
// Update maxSum if it is less than
// current row sum
if (maxSum < sum) {
maxSum = sum;
// store index
idx = i;
}
}
// Arraylist to store values of index
// of maximum sum and the maximum sum together
ArrayList<Integer> res = new ArrayList<>();
res.add(idx);
res.add(maxSum);
return res;
}
// Driver code
public static void main(String[] args)
{
N = 5;
int[][] mat = {
{ 1, 2, 3, 4, 5 }, { 5, 3, 1, 4, 2 },
{ 5, 6, 7, 8, 9 }, { 0, 6, 3, 4, 12 },
{ 9, 7, 12, 4, 3 },
};
ArrayList<Integer> ans = colMaxSum(mat);
System.out.println("Row " + (ans.get(0) + 1)
+ " has max sum " + ans.get(1));
}
}
// This code is contributed by Vivekkumar Singh
Python3
# Python3 program to find row with
# max sum in a matrix
import sys
N = 5 # No of rows and column
# Function to find the row with max sum
def colMaxSum(mat):
# Variable to store index of row
# with maximum
idx = -1
# Variable to store max sum
maxSum = -sys.maxsize
# Traverse matrix row wise
for i in range(0, N):
sum = 0
# calculate sum of row
for j in range(0, N):
sum += mat[i][j]
# Update maxSum if it is less than
# current sum
if (sum > maxSum):
maxSum = sum
# store index
idx = i
res = [idx, maxSum]
# return result
return res
# Driver code
mat = [[1, 2, 3, 4, 5],
[5, 3, 1, 4, 2],
[5, 6, 7, 8, 9],
[0, 6, 3, 4, 12],
[9, 7, 12, 4, 3]]
ans = colMaxSum(mat)
print("Row", ans[0] + 1, "has max sum", ans[1])
# This code is contributed by Sanjit_Prasad
C#
// C# program to find row with
// max sum in a matrix
using System;
using System.Collections.Generic;
public class MaxSum {
public static int N;
static List<int> colMaxSum(int[, ] mat)
{
// Variable to store index of row
// with maximum
int idx = -1;
// Variable to store maximum sum
int maxSum = int.MinValue;
// Traverse the matrix row wise
for (int i = 0; i < N; i++) {
int sum = 0;
for (int j = 0; j < N; j++) {
sum += mat[i, j];
}
// Update maxSum if it is less than
// current row sum
if (maxSum < sum) {
maxSum = sum;
// store index
idx = i;
}
}
// Arraylist to store values of index
// of maximum sum and the maximum sum together
List<int> res = new List<int>();
res.Add(idx);
res.Add(maxSum);
return res;
}
// Driver code
public static void Main(String[] args)
{
N = 5;
int[, ] mat = {
{ 1, 2, 3, 4, 5 }, { 5, 3, 1, 4, 2 },
{ 5, 6, 7, 8, 9 }, { 0, 6, 3, 4, 12 },
{ 9, 7, 12, 4, 3 },
};
List<int> ans = colMaxSum(mat);
Console.WriteLine("Row " + (ans[0] + 1)
+ " has max sum " + ans[1]);
}
}
// This code has been contributed by 29AjayKumar
JavaScript
<script>
// JavaScript program to find row with
// max sum in a matrix
var N;
function colMaxSum(mat)
{
// Variable to store index of row
// with maximum
var idx = -1;
// Variable to store maximum sum
var maxSum = -1000000000;
// Traverse the matrix row wise
for (var i = 0; i < N; i++)
{
var sum = 0;
for (var j = 0; j < N; j++)
{
sum += mat[i][j];
}
// Update maxSum if it is less than
// current row sum
if (maxSum < sum)
{
maxSum = sum;
// store index
idx = i;
}
}
// Arraylist to store values of index
// of maximum sum and the maximum sum together
var res = [];
res.push(idx);
res.push(maxSum);
return res;
}
// Driver code
N = 5;
var mat = [
[ 1, 2, 3, 4, 5 ],
[ 5, 3, 1, 4, 2 ],
[ 5, 6, 7, 8, 9 ],
[ 0, 6, 3, 4, 12],
[ 9, 7, 12, 4, 3]];
var ans = colMaxSum(mat);
document.write("Row "+ (ans[0]+1)+ " has max sum "
+ ans[1]);
</script>
OutputRow 3 has max sum 35
Time complexity: O(N2)
Auxiliary space: O(1)
Example in c:
Approach:
Initialize a variable max_sum to zero and a variable max_row to -1.
Traverse the matrix row by row:
a. Initialize a variable row_sum to zero.
b. Traverse the elements of the current row and add them to row_sum.
c. If row_sum is greater than max_sum, update max_sum to row_sum and max_row to the current row.
Return max_row.
C
#include <stdio.h>
int main()
{
int mat[3][4] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 } };
int m = 3;
int n = 4;
int max_sum = 0;
int max_row = -1;
// Traverse the matrix row by row and find the row with
// maximum sum
for (int i = 0; i < m; i++) {
int row_sum = 0;
for (int j = 0; j < n; j++) {
row_sum += mat[i][j];
}
if (row_sum > max_sum) {
max_sum = row_sum;
max_row = i;
}
}
printf("Row with maximum sum is: %d\n", max_row);
return 0;
}
C++
#include <iostream>
using namespace std;
int main()
{
int mat[3][4] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 } };
int m = 3;
int n = 4;
int max_sum = 0;
int max_row = -1;
// Traverse the matrix row by row and find the row with
// maximum sum
for (int i = 0; i < m; i++) {
int row_sum = 0;
for (int j = 0; j < n; j++) {
row_sum += mat[i][j];
}
if (row_sum > max_sum) {
max_sum = row_sum;
max_row = i;
}
}
cout << "Row with maximum sum is: " << max_row << endl;
return 0;
}
Java
class Main {
public static void main(String[] args)
{
int[][] mat = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 } };
int m = 3;
int n = 4;
int max_sum = 0;
int max_row = -1;
// Traverse the matrix row by row and find the row
// with maximum sum
for (int i = 0; i < m; i++) {
int row_sum = 0;
for (int j = 0; j < n; j++) {
row_sum += mat[i][j];
}
if (row_sum > max_sum) {
max_sum = row_sum;
max_row = i;
}
}
System.out.println("Row with maximum sum is: "
+ max_row);
}
}
Python3
# Create a 3x4 matrix
mat = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]
m = 3
n = 4
# Initialize max_sum and max_row to 0
max_sum = 0
max_row = -1
# Traverse the matrix row by row and find the row with maximum sum
for i in range(m):
row_sum = 0
for j in range(n):
row_sum += mat[i][j]
if row_sum > max_sum:
max_sum = row_sum
max_row = i
# Print the index of the row with maximum sum
print("Row with maximum sum is: ", max_row)
JavaScript
// Create a 3x4 matrix
let mat = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]];
let m = 3;
let n = 4;
// Initialize max_sum and max_row to 0
let max_sum = 0;
let max_row = -1;
// Traverse the matrix row by row and find the row with maximum sum
for (let i = 0; i < m; i++) {
let row_sum = 0;
for (let j = 0; j < n; j++) {
row_sum += mat[i][j];
}
if (row_sum > max_sum) {
max_sum = row_sum;
max_row = i;
}
}
// Print the index of the row with maximum sum
console.log("Row with maximum sum is: ", max_row);
C#
using System;
class GFG {
public static void Main(string[] args)
{
int[][] mat
= new int[][] { new int[] { 1, 2, 3, 4 },
new int[] { 5, 6, 7, 8 },
new int[] { 9, 10, 11, 12 } };
int m = 3;
int n = 4;
// Initialize max_sum and max_row to 0
int max_sum = 0;
int max_row = -1;
// Traverse the matrix row by row and find the row
// with maximum sum
for (int i = 0; i < m; i++) {
int row_sum = 0;
for (int j = 0; j < n; j++) {
row_sum += mat[i][j];
}
if (row_sum > max_sum) {
max_sum = row_sum;
max_row = i;
}
}
// Print the index of the row with maximum sum
Console.WriteLine("Row with maximum sum is: "
+ max_row);
}
}
OutputRow with maximum sum is: 2
time complexity of O(mn)
space complexity of O(n)
Similar Reads
Find column with maximum sum in a Matrix Given a N*N matrix. The task is to find the index of column with maximum sum. That is the column whose sum of elements are maximum. Examples: Input : mat[][] = { { 1, 2, 3, 4, 5 }, { 5, 3, 1, 4, 2 }, { 5, 6, 7, 8, 9 }, { 0, 6, 3, 4, 12 }, { 9, 7, 12, 4, 3 }, }; Output : Column 5 has max sum 31 Input
7 min read
Pair with maximum sum in a Matrix Given a NxM matrix with N rows and M columns of positive integers. The task is to find the sum of pair with maximum sum in the matrix. Examples: Input : mat[N][M] = {{1, 2, 3, 4}, {25, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}} Output : 41 Pair (25, 16) has the maximum sum Input : mat[N][M] = {{1,
7 min read
Maximum sum path in a Matrix Given an n*m matrix, the task is to find the maximum sum of elements of cells starting from the cell (0, 0) to cell (n-1, m-1). However, the allowed moves are right, downwards or diagonally right, i.e, from location (i, j) next move can be (i+1, j), or, (i, j+1), or (i+1, j+1). Find the maximum sum
15+ min read
Maximum sum of elements from each row in the matrix Given a matrix, find the maximum sum we can have by selecting just one element from every row. Condition is element selected from nth row must be strictly greater than element from (n-1)th row, else no element must be taken from row. Print the sum if possible else print -1. Examples : Input : 1 2 31
7 min read
Find Matrix With Given Row and Column Sums Given two arrays rowSum[] and colSum[] of size n and m respectively, the task is to construct a matrix of dimensions n à m such that the sum of matrix elements in every ith row is rowSum[i] and the sum of matrix elements in every jth column is colSum[j].Note: The resultant matrix can have only non-n
15 min read
Find the maximum sum path in the given Matrix Consider an infinite matrix. The cells of the matrix are filled with natural numbers from the cell (1, 1) in the direction of top right to bottom left diagonally. Then the task is to output the Maximum path sum between two points (X1, Y1) and (X2, Y2). Matrix filling process is as follows: Matrix fi
7 min read
Find Column with Maximum Zeros in Matrix Given a matrix(2D array) M of size N*N consisting of 0s and 1s only. The task is to find the column with the maximum number of 0s. If more than one column exists, print the one which comes first. If the maximum number of 0s is 0 then return -1. Examples: Input: N = 3, M[][] = {{0, 0, 0}, {1, 0, 1},
5 min read
Maximum path sum in matrix Given a matrix of size n * m. Find the maximum path sum in the matrix. The maximum path is the sum of all elements from the first row to the last row where you are allowed to move only down or diagonally to left or right. You can start from any element in the first row.Examples: Input: mat[][] = 10
6 min read
Find a specific pair in Matrix Given an n x n matrix mat[n][n] of integers, find the maximum value of mat(c, d) - mat(a, b) over all choices of indexes such that both c > a and d > b. Example: Input:mat[N][N] = {{ 1, 2, -1, -4, -20 }, { -8, -3, 4, 2, 1 }, { 3, 8, 6, 1, 3 }, { -4, -1, 1, 7, -6 }, { 0, -4, 10, -5, 1 }};Output
15+ min read