First Fit algorithm in Memory Management using Linked List
Last Updated :
26 Apr, 2023
First Fit Algorithm for Memory Management: The first memory partition which is sufficient to accommodate the process is allocated.
We have already discussed first fit algorithm using arrays in this article. However, here we are going to look into another approach using a linked list where the deletion of allocated nodes is also possible.
Examples:
Input: blockSize[] = {100, 500, 200}
processSize[] = {417, 112, 426, 95}
Output:
Block of size 426 can't be allocated
Tag Block ID Size
0 1 417
1 2 112
2 0 95
After deleting block with tag id 0.
Tag Block ID Size
1 2 112
2 0 95
3 1 426

Approach: The idea is to use the memory block with a unique tag id. Each process of different sizes are given block id, which signifies to which memory block they belong to, and unique tag id to delete particular process to free up space. Create a free list of given memory block sizes and allocated list of processes.
Create allocated list:
Create an allocated list of given process sizes by finding the first memory block with sufficient size to allocate memory from. If the memory block is not found, then simply print it. Otherwise, create a node and add it to the allocated linked list.
Delete process:
Each process is given a unique tag id. Delete the process node from the allocated linked list to free up some space for other processes. After deleting, use the block id of the deleted node to increase the memory block size in the free list.
Below is the implementation of the approach:
C++
// C++ implementation of the First
// sit memory management algorithm
// using linked list
#include <bits/stdc++.h>
using namespace std;
// Two global counters
int g = 0, k = 0;
// Structure for free list
struct free {
int tag;
int size;
struct free* next;
}* free_head = NULL, *prev_free = NULL;
// Structure for allocated list
struct alloc {
int block_id;
int tag;
int size;
struct alloc* next;
}* alloc_head = NULL, *prev_alloc = NULL;
// Function to create free
// list with given sizes
void create_free(int c)
{
struct free* p
= (struct free*)malloc(sizeof(struct free));
p->size = c;
p->tag = g;
p->next = NULL;
if (free_head == NULL)
free_head = p;
else
prev_free->next = p;
prev_free = p;
g++;
}
// Function to print free list which
// prints free blocks of given sizes
void print_free()
{
struct free* p = free_head;
cout << "Tag\tSize\n";
while (p != NULL) {
cout << p->tag << "\t" << p->size << "\n";
p = p->next;
}
}
// Function to print allocated list which
// prints allocated blocks and their block ids
void print_alloc()
{
struct alloc* p = alloc_head;
cout << "Tag\tBlock ID\tSize\n";
while (p != NULL) {
cout << p->tag << "\t " << p->block_id << "\t\t"
<< p->size << "\n";
p = p->next;
}
}
// Function to allocate memory to
// blocks as per First fit algorithm
void create_alloc(int c)
{
// create node for process of given size
struct alloc* q
= (struct alloc*)malloc(sizeof(struct alloc));
q->size = c;
q->tag = k;
q->next = NULL;
struct free* p = free_head;
// Iterate to find first memory
// block with appropriate size
while (p != NULL) {
if (q->size <= p->size)
break;
p = p->next;
}
// Node found to allocate
if (p != NULL) {
// Adding node to allocated list
q->block_id = p->tag;
p->size -= q->size;
if (alloc_head == NULL)
alloc_head = q;
else {
prev_alloc = alloc_head;
while (prev_alloc->next != NULL)
prev_alloc = prev_alloc->next;
prev_alloc->next = q;
}
k++;
}
else // Node found to allocate space from
cout << "Block of size " << c
<< " can't be allocated\n";
}
// Function to delete node from
// allocated list to free some space
void delete_alloc(int t)
{
// Standard delete function
// of a linked list node
struct alloc *p = alloc_head, *q = NULL;
// First, find the node according
// to given tag id
while (p != NULL) {
if (p->tag == t)
break;
q = p;
p = p->next;
}
if (p == NULL)
cout << "Tag ID doesn't exist\n";
else if (p == alloc_head)
alloc_head = alloc_head->next;
else
q->next = p->next;
struct free* temp = free_head;
while (temp != NULL) {
if (temp->tag == p->block_id) {
temp->size += p->size;
break;
}
temp = temp->next;
}
}
// Driver Code
int main()
{
int blockSize[] = { 100, 500, 200 };
int processSize[] = { 417, 112, 426, 95 };
int m = sizeof(blockSize) / sizeof(blockSize[0]);
int n = sizeof(processSize) / sizeof(processSize[0]);
for (int i = 0; i < m; i++)
create_free(blockSize[i]);
for (int i = 0; i < n; i++)
create_alloc(processSize[i]);
print_alloc();
// Block of tag id 0 deleted
// to free space for block of size 426
delete_alloc(0);
create_alloc(426);
cout << "After deleting block"
<< " with tag id 0.\n";
print_alloc();
}
Java
// Java implementation of the First
// sit memory management algorithm
// using linked list
public class GFG {
// Two global counters
static int g = 0, k = 0;
// Structure for free list
static class free {
int tag;
int size;
free next;
}
static free free_head = null;
static free prev_free = null;
// Structure for allocated list
static class alloc {
int block_id;
int tag;
int size;
alloc next;
}
static alloc alloc_head = null;
static alloc prev_alloc = null;
// Function to create free
// list with given sizes
static void create_free(int c)
{
free p = new free();
p.size = c;
p.tag = g;
p.next = null;
if (free_head == null)
free_head = p;
else
prev_free.next = p;
prev_free = p;
g++;
}
// Function to print free list which
// prints free blocks of given sizes
static void print_free()
{
free p = free_head;
System.out.println("Tag\tSize");
while (p != null) {
System.out.println(p.tag + "\t" + p.size);
p = p.next;
}
}
// Function to print allocated list which
// prints allocated blocks and their block ids
static void print_alloc()
{
alloc p = alloc_head;
System.out.println("Tag\tBlock ID\tSize");
while (p != null) {
System.out.println(p.tag + "\t " + p.block_id
+ "\t\t" + p.size);
p = p.next;
}
}
// Function to allocate memory to
// blocks as per First fit algorithm
static void create_alloc(int c)
{
// create node for process of given size
alloc q = new alloc();
q.size = c;
q.tag = k;
q.next = null;
free p = free_head;
// Iterate to find first memory
// block with appropriate size
while (p != null) {
if (q.size <= p.size)
break;
p = p.next;
}
// Node found to allocate
if (p != null) {
// Adding node to allocated list
q.block_id = p.tag;
p.size -= q.size;
if (alloc_head == null)
alloc_head = q;
else {
prev_alloc = alloc_head;
while (prev_alloc.next != null)
prev_alloc = prev_alloc.next;
prev_alloc.next = q;
}
k++;
}
else // Node found to allocate space from
System.out.println("Block of size " + c
+ " can't be allocated");
}
// Function to delete node from
// allocated list to free some space
static void delete_alloc(int t)
{
// Standard delete function
// of a linked list node
alloc p = alloc_head, q = null;
// First, find the node according
// to given tag id
while (p != null) {
if (p.tag == t)
break;
q = p;
p = p.next;
}
if (p == null)
System.out.println("Tag ID doesn't exist");
else if (p == alloc_head)
alloc_head = alloc_head.next;
else
q.next = p.next;
free temp = free_head;
while (temp != null) {
if (temp.tag == p.block_id) {
temp.size += p.size;
break;
}
temp = temp.next;
}
}
// Driver Code
public static void main(String[] args)
{
int blockSize[] = { 100, 500, 200 };
int processSize[] = { 417, 112, 426, 95 };
int m = blockSize.length;
int n = processSize.length;
for (int i = 0; i < m; i++)
create_free(blockSize[i]);
for (int i = 0; i < n; i++)
create_alloc(processSize[i]);
print_alloc();
// Block of tag id 0 deleted
// to free space for block of size 426
delete_alloc(0);
create_alloc(426);
System.out.println("After deleting block"
+ " with tag id 0.");
print_alloc();
}
}
// This code is contributed by Lovely Jain
Python3
# Python3 implementation of the First
# sit memory management algorithm
# using linked list
# Two global counters
g = 0; k = 0
# Structure for free list
class free:
def __init__(self):
self.tag=-1
self.size=0
self.next=None
free_head = None; prev_free = None
# Structure for allocated list
class alloc:
def __init__(self):
self.block_id=-1
self.tag=-1
self.size=0
self.next=None
alloc_head = None;prev_alloc = None
# Function to create free
# list with given sizes
def create_free(c):
global g,prev_free,free_head
p = free()
p.size = c
p.tag = g
p.next = None
if free_head is None:
free_head = p
else:
prev_free.next = p
prev_free = p
g+=1
# Function to print free list which
# prints free blocks of given sizes
def print_free():
p = free_head
print("Tag\tSize")
while (p != None) :
print("{}\t{}".format(p.tag,p.size))
p = p.next
# Function to print allocated list which
# prints allocated blocks and their block ids
def print_alloc():
p = alloc_head
print("Tag\tBlock ID\tSize")
while (p is not None) :
print("{}\t{}\t{}\t".format(p.tag,p.block_id,p.size))
p = p.next
# Function to allocate memory to
# blocks as per First fit algorithm
def create_alloc(c):
global k,alloc_head
# create node for process of given size
q = alloc()
q.size = c
q.tag = k
q.next = None
p = free_head
# Iterate to find first memory
# block with appropriate size
while (p != None) :
if (q.size <= p.size):
break
p = p.next
# Node found to allocate
if (p != None) :
# Adding node to allocated list
q.block_id = p.tag
p.size -= q.size
if (alloc_head == None):
alloc_head = q
else :
prev_alloc = alloc_head
while (prev_alloc.next != None):
prev_alloc = prev_alloc.next
prev_alloc.next = q
k+=1
else: # Node found to allocate space from
print("Block of size {} can't be allocated".format(c))
# Function to delete node from
# allocated list to free some space
def delete_alloc(t):
global alloc_head
# Standard delete function
# of a linked list node
p = alloc_head; q = None
# First, find the node according
# to given tag id
while (p != None) :
if (p.tag == t):
break
q = p
p = p.next
if (p == None):
print("Tag ID doesn't exist")
elif (p == alloc_head):
alloc_head = alloc_head.next
else:
q.next = p.next
temp = free_head
while (temp != None) :
if (temp.tag == p.block_id) :
temp.size += p.size
break
temp = temp.next
# Driver Code
if __name__ == '__main__':
blockSize = [100, 500, 200]
processSize = [417, 112, 426, 95]
m = len(blockSize)
n = len(processSize)
for i in range(m):
create_free(blockSize[i])
for i in range(n):
create_alloc(processSize[i])
print_alloc()
# Block of tag id 0 deleted
# to free space for block of size 426
delete_alloc(0)
create_alloc(426)
print("After deleting block with tag id 0.")
print_alloc()
C#
// C# implementation of the First
// sit memory management algorithm
// using linked list
using System;
public class MainClass {
// Two global counters
public static int g = 0, k = 0;
public class Free {
// Structure for free list
public int tag;
public int size;
public Free next;
}
public static Free free_head = null, prev_free = null;
// Structure for allocated list
public class Alloc {
public int block_id;
public int tag;
public int size;
public Alloc next;
}
public static Alloc alloc_head = null, prev_alloc
= null;
// Function to create free
// list with given sizes
public static void CreateFree(int c)
{
Free p = new Free();
p.size = c;
p.tag = g;
p.next = null;
if (free_head == null)
free_head = p;
else
prev_free.next = p;
prev_free = p;
g++;
}
// Function to print free list which
// prints free blocks of given sizes
public static void PrintFree()
{
Free p = free_head;
Console.WriteLine("Tag\tSize");
while (p != null) {
Console.WriteLine(p.tag + "\t" + p.size);
p = p.next;
}
}
// Function to print allocated list which
// prints allocated blocks and their block ids
public static void PrintAlloc()
{
// create node for process of given size
Alloc p = alloc_head;
Console.WriteLine("Tag\tBlock ID\tSize");
while (p != null) {
// Iterate to find first memory
// block with appropriate size
Console.WriteLine(p.tag + "\t " + p.block_id
+ "\t\t" + p.size);
p = p.next;
}
}
public static void CreateAlloc(int c)
{
Alloc q = new Alloc();
q.size = c;
q.tag = k;
q.next = null;
Free p = free_head;
while (p != null) {
if (q.size <= p.size)
break;
p = p.next;
}
if (p != null) {
// Adding node to allocated list
q.block_id = p.tag;
p.size -= q.size;
if (alloc_head == null)
alloc_head = q;
else {
prev_alloc = alloc_head;
while (prev_alloc.next != null)
prev_alloc = prev_alloc.next;
prev_alloc.next = q;
}
k++;
}
else // Node found to allocate space from
Console.WriteLine("Block of size " + c
+ " can't be allocated");
}
// Function to delete node from
// allocated list to free some space
public static void DeleteAlloc(int t)
{
// Standard delete function
// of a linked list node
Alloc p = alloc_head, q = null;
while (p != null) {
// First, find the node according
// to given tag id
if (p.tag == t)
break;
q = p;
p = p.next;
}
if (p == null)
Console.WriteLine("Tag ID doesn't exist");
else if (p == alloc_head)
alloc_head = alloc_head.next;
else
q.next = p.next;
Free temp = free_head;
while (temp != null) {
if (temp.tag == p.block_id) {
temp.size += p.size;
break;
}
temp = temp.next;
}
}
// Driver Code
public static void Main()
{
int[] blockSize = { 100, 500, 200 };
int[] processSize = { 417, 112, 426, 95 };
int m = blockSize.Length;
int n = processSize.Length;
for (int i = 0; i < m; i++)
CreateFree(blockSize[i]);
for (int i = 0; i < n; i++)
CreateAlloc(processSize[i]);
PrintAlloc();
// Block of tag id 0 deleted
// to free space for block of size 426
DeleteAlloc(0);
CreateAlloc(426);
Console.WriteLine(
"After deleting block with tag id 0.");
PrintAlloc();
}
}
JavaScript
//Javascript Equivalent
// Two global counters
let g = 0; let k = 0
// Structure for free list
class Free {
constructor() {
this.tag = -1;
this.size = 0;
this.next = null;
}
}
let freeHead = null; let prevFree = null;
// Structure for allocated list
class Alloc {
constructor() {
this.blockId = -1;
this.tag = -1;
this.size = 0;
this.next = null;
}
}
let allocHead = null; let prevAlloc = null;
// Function to create free
// list with given sizes
function createFree(c) {
let p = new Free();
p.size = c;
p.tag = g;
p.next = null;
if (freeHead === null) {
freeHead = p;
} else {
prevFree.next = p;
}
prevFree = p;
g+=1;
}
// Function to print free list which
// prints free blocks of given sizes
function printFree() {
let p = freeHead;
console.log("Tag\tSize");
while (p !== null) {
console.log(`${p.tag}\t${p.size}`);
p = p.next;
}
}
// Function to print allocated list which
// prints allocated blocks and their block ids
function printAlloc() {
let p = allocHead;
console.log("Tag\tBlock ID\tSize");
while (p !== null) {
console.log(`${p.tag}\t${p.blockId}\t${p.size}\t`);
p = p.next;
}
}
// Function to allocate memory to
// blocks as per First fit algorithm
function createAlloc(c) {
let q = new Alloc();
q.size = c;
q.tag = k;
q.next = null;
let p = freeHead;
// Iterate to find first memory
// block with appropriate size
while (p !== null) {
if (q.size <= p.size) {
break;
}
p = p.next;
}
// Node found to allocate
if (p !== null) {
// Adding node to allocated list
q.blockId = p.tag;
p.size -= q.size;
if (allocHead === null) {
allocHead = q;
} else {
prevAlloc = allocHead;
while (prevAlloc.next !== null) {
prevAlloc = prevAlloc.next;
}
prevAlloc.next = q;
}
k+=1;
} else { // Node found to allocate space from
console.log(`Block of size ${c} can't be allocated`);
}
}
// Function to delete node from
// allocated list to free some space
function deleteAlloc(t) {
// Standard delete function
// of a linked list node
let p = allocHead; let q = null;
// First, find the node according
// to given tag id
while (p !== null) {
if (p.tag === t) {
break;
}
q = p;
p = p.next;
}
if (p === null) {
console.log("Tag ID doesn't exist");
} else if (p === allocHead) {
allocHead = allocHead.next;
} else {
q.next = p.next;
}
let temp = freeHead;
while (temp !== null) {
if (temp.tag === p.blockId) {
temp.size += p.size;
break;
}
temp = temp.next;
}
}
// Driver Code
function main() {
let blockSize = [100, 500, 200];
let processSize = [417, 112, 426, 95];
let m = blockSize.length;
let n = processSize.length;
for (let i = 0; i < m; i++) {
createFree(blockSize[i]);
}
for (let i = 0; i < n; i++) {
createAlloc(processSize[i]);
}
printAlloc();
// Block of tag id 0 deleted
// to free space for block of size 426
deleteAlloc(0);
createAlloc(426);
console.log("After deleting block with tag id 0.");
printAlloc();
}
main();
Output: Block of size 426 can't be allocated
Tag Block ID Size
0 1 417
1 2 112
2 0 95
After deleting block with tag id 0.
Tag Block ID Size
1 2 112
2 0 95
3 1 426
Time complexity of the First Fit memory management algorithm is O(n), where n is the number of memory blocks. When a process is to be allocated, it will traverse the whole list of free blocks and check for the first block which is capable of accommodating the process. Hence, the time complexity is O(n).
Auxiliary Space complexity of the First Fit memory management algorithm is O(n), where n is the number of memory blocks. This is because the algorithm requires two linked lists for storing the free and allocated blocks. The free list stores the details of free blocks whereas the allocated list stores the details of allocated blocks. Hence, the space complexity is O(n).
Similar Reads
Program for Best Fit algorithm in Memory Management using Linked List
Best fit algorithm for memory management: The memory partition in which there is a minimum loss on the allocation of the process is the best-fit memory partition that is allocated to the process.We have already discussed one best-fit algorithm using arrays in this article. However, here we are going
15+ min read
Algorithm for implementing Distributed Shared Memory
Distributed shared memory(DSM) system is a resource management component of distributed operating system that implements shared memory model in distributed system which have no physically shared memory. The shared memory model provides a virtual address space which is shared by all nodes in a distri
3 min read
Merge K Sorted Linked Lists using Min Heap
Given k sorted linked lists of different sizes, the task is to merge them all maintaining their sorted order.Examples:Input: K = 3, N = 4list1 = 1->3->5->7->NULLlist2 = 2->4->6->8->NULLlist3 = 0->9->10->11->NULLOutput: 0->1->2->3->4->5->6->7-
9 min read
Menu driven program for all operations on singly linked list in C
A Linked List is a linear data structure that consists of two parts: one is the data part and the other is the address part. In this article, all the common operations of a singly linked list are discussed in one menu-driven program.Operations to be PerformedcreateList(): To create the list with the
8 min read
Move first element to end of a given Linked List
Write a C function that moves first element to end in a given Singly Linked List. For example, if the given Linked List is 1->2->3->4->5, then the function should change the list to 2->3->4->5->1. Algorithm: Traverse the list till last node. Use two pointers: one to store the
13 min read
Introduction to Linked List - Data Structure and Algorithm Tutorials
Linked List is basically chains of nodes where each node contains information such as data and a pointer to the next node in the chain. It is a popular data structure with a wide range of real-world applications. Unlike Arrays, Linked List elements are not stored at a contiguous location. In the lin
9 min read
XOR Linked List â A Memory Efficient Doubly Linked List | Set 2
In the previous post, we discussed how a Doubly Linked can be created using only one space for the address field with every node. In this post, we will discuss the implementation of a memory-efficient doubly linked list. We will mainly discuss the following two simple functions. A function to insert
10 min read
XOR Linked List - A Memory Efficient Doubly Linked List | Set 1
In this post, we're going to talk about how XOR linked lists are used to reduce the memory requirements of doubly-linked lists.We know that each node in a doubly-linked list has two pointer fields which contain the addresses of the previous and next node. On the other hand, each node of the XOR link
15+ min read
Memory efficient doubly linked list
We need to implement a doubly linked list with the use of a single pointer in each node. For that we are given a stream of data of size n for the linked list, your task is to make the function insert() and getList(). The insert() function pushes (or inserts at the beginning) the given data in the li
9 min read
Linked List meaning in DSA
A linked list is a linear data structure used for storing a sequence of elements, where each element is stored in a node that contains both the element and a pointer to the next node in the sequence. Linked ListTypes of linked lists: Linked lists can be classified in the following categories Singly
4 min read