Function Calling in Java and Spring AI Using the Mistral AI API
Last Updated :
22 Aug, 2024
Function Calling is a powerful feature in modern AI integration that allows language models to interact dynamically with external tools and APIs. This feature facilitates tasks such as retrieving real-time information or executing operations directly from the model. Spring AI is an application framework designed to seamlessly integrate AI functionalities with Spring’s portability and modularity design principles. This article will guide you through implementing function calling in Java using the Mistral AI API, a tool that simplifies integrating advanced AI models into your applications.
What is Mistral AI API?
The Mistral AI API enables developers to integrate Mistral's advanced models into their applications with minimal code. Accessible via La Plateforme, the API requires activation of payments to obtain an API key, which is necessary for accessing the chat platform and other functionalities.
Steps to Implement Function Calling in Java and Spring AI Using the Mistral AI API
Step 1: Obtain the API Key
To access the Mistral API, you must first obtain an API key. Follow these steps:
- Sign Up/Log In: Access your Mistral AI account.
- Navigate to API Keys: Go to the API section in your dashboard.
- Generate API Key: Create a new API key and copy it for use in your application.
To use the Mistral AI API, you first need to obtain an API key. Navigate to the administration console for API keys, activate payments, and retrieve your API key.
Step 2: Add Dependencies
Add this Spring Milestones and Spring Snapshots dependencies to your pom.xml
file.
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<releases>
<enabled>false</enabled>
</releases>
</repository>
</repositories>
Step 3: Add the API key
Store your Mistral API key and base URL in the application.properties
file.
# Base URL for Mistral AI API
ai.api.base-url=https://api.mistral.ai
# API key for authentication
ai.api.token=YOUR_API_KEY
Note: Replace YOUR_API_KEY
with the actual API key you obtained.
Step 4: Create a Spring Service to Call Mistral AI API
Create a Spring service to handle communication with the Mistral AI API. This service will use RestTemplate
to make HTTP requests.
Java
import org.springframework.beans.factory.annotation.Value;
import org.springframework.http.*;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;
import org.springframework.web.util.UriComponentsBuilder;
@Service
public class MistralAIService {
@Value("${ai.api.base-url}")
private String baseUrl;
@Value("${ai.api.token}")
private String apiToken;
private final RestTemplate restTemplate;
public MistralAIService(RestTemplate restTemplate) {
this.restTemplate = restTemplate;
}
public String postRequestToAI(String endpoint, String payload) {
try {
String fullUrl = UriComponentsBuilder.fromHttpUrl(baseUrl)
.pathSegment(endpoint)
.toUriString();
HttpHeaders headers = new HttpHeaders();
headers.setBearerAuth(apiToken);
headers.setContentType(MediaType.APPLICATION_JSON);
HttpEntity<String> requestEntity = new HttpEntity<>(payload, headers);
ResponseEntity<String> response = restTemplate.exchange(fullUrl, HttpMethod.POST, requestEntity, String.class);
if (response.getStatusCode() == HttpStatus.OK) {
return response.getBody();
} else {
// Handle non-OK responses
return "Error: " + response.getStatusCode();
}
} catch (Exception e) {
// Handle exceptions
return "Exception: " + e.getMessage();
}
}
}
- RestTemplate: A Spring class for making HTTP requests, included via the constructor as a necessary dependency.
- UriComponentsBuilder: Adds the endpoint to the base URL and creates a new URL from it.
- response.getBody(): Retrieves the HTTP response body returned by the
postRequestToAI
method.
Step 5: Create a Configuration Class
Define a configuration class to set up a RestTemplate bean:
Java
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class AppConfig {
@Bean
public RestTemplate restTemplate() {
return new RestTemplate();
}
}
Step 6: Test the Integration
Create a test class to ensure that the service works as expected:
Java
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.client.RestTemplate;
import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.Mockito.*;
@SpringBootTest
public class MistralAIServiceTest {
@Autowired
private MistralAIService mistralAIService;
@Test
void whenPostRequestToAI_thenExpectedResponseIsReturned() {
RestTemplate mockRestTemplate = mock(RestTemplate.class);
mistralAIService = new MistralAIService(mockRestTemplate);
String mockResponse = "Hello, Mistral!";
when(mockRestTemplate.exchange(anyString(), any(), any(), eq(String.class)))
.thenReturn(new ResponseEntity<>(mockResponse, HttpStatus.OK));
String response = mistralAIService.postRequestToAI("/test-endpoint", "{}");
assertThat(response).isEqualTo(mockResponse);
}
}
Conclusion
In this article, we have demonstrated how to integrate the Mistral AI API with a Java application using Spring Boot. We covered setting up dependencies, configuring properties, creating a service for API communication, and testing the integration. This setup will enable you to leverage advanced AI models in your applications efficiently.
Similar Reads
Function Calling and Java Integration with Spring AI Models
Spring AI is a powerful Spring Framework project that brings Java developers artificial intelligence (AI) capabilities. By integrating AI models into Java applications, Spring AI simplifies the process of creating intelligent applications while leveraging the robustness of the Spring ecosystem.This
5 min read
API Composition and Aggregation with Spring Cloud Gateway in Java Microservices
API Composition and Aggregation is the critical pattern in the microservices architecture. It can enable combining the data from multiple microservices into a single response which is essential for reducing the number of client-side requests and improving the overall efficiency of the data retrieval
8 min read
How to Create a REST API using Java Spring Boot?
Representational State Transfer (REST) is a software architectural style that defines a set of constraints for creating web services. RESTful web services allow systems to access and manipulate web resources through a uniform and predefined set of stateless operations. Unlike SOAP, which exposes its
4 min read
How to Make REST Calls using FeignClient in Spring Boot?
Representational State Transfer (REST) is an architectural style that defines a set of constraints to be used for creating web services. REST API is a way of accessing web services in a simple and flexible way without having any processing. FeignClient also known as Spring Cloud OpenFeign is a Decla
12 min read
Parse Nested User-Defined Functions using Spring Expression Language (SpEL)
In dynamic programming, evaluating complex expressions that uses nested user-defined functions can be very challenging. In Java, we can use Spring Expression Language (SpEL) to parse and execute such expressions at runtime. In this article, we will learn how to parse and execute nested user-defined
4 min read
Spring WebFlux Functional Endpoints CRUD REST API Example
Spring Boot is a Java framework for back-end development. Another miracle in Spring Boot is the Spring Boot Community has developed the Spring Reactive Web Framework i.e. Spring WebFlux. To develop this project, we have used the MongoDB database. Here, for every CRUD (Create, Retrieve, Update, Delet
7 min read
How to Capture Data using @RequestParam Annotation in Spring?
The @RequestParam annotation enables Spring to capture input data that may be passed as a query, form data, or any arbitrary custom data. It is used to bind a web request parameter to a method parameter. Here, we are going to understand these two above lines, and we will see how we can capture data
6 min read
Spring Boot - REST API Documentation using OpenAPI
For any application, API documentation is essential for both users and developers. How to use an API, what will be the request body, and what will the API's response be? API documentation is the answer to all of these questions, springdoc-openapi is a Java library that automates the generation of th
4 min read
Spring Boot - Build a Dynamic Full Text Search API Using JPA Queries
A Global Full-Text Entity Search is a search functionality that allows users to find entities such as records or objects within a dataset by searching through the entirety of their content. Global Full-Text Entity Search is like having a super-smart search companion that digs deep into the entire co
9 min read
Creating REST APIs Using Spring WebFlux and MongoDB
Spring Boot is the most popular Java framework for building stand-alone Java-based applications quickly and with minimal configuration. WebFlux is a responsive operating system provided by the Spring framework for running non-blocking, asynchronous, and event-driven applications. On the other hand,
10 min read