How to Drop Index Column in Pandas? Last Updated : 03 May, 2025 Comments Improve Suggest changes Like Article Like Report When working with Pandas DataFrames, it's common to reset or remove custom indexing, especially after filtering or modifying rows. Dropping the index is useful when:We no longer need a custom index.We want to restore default integer indexing (0, 1, 2, ...).We're preparing data for exports or transformations where index values are not needed.In this article, we'll learn how to drop the index column in a Pandas DataFrame using the reset_index() methodSyntax of reset_index()DataFrame.reset_index(drop=True, inplace=True)Parameters:drop (bool): If True, the index is reset and the old index is not added as a new column.inplace (bool): If True, modifies the DataFrame in place. If False, returns a new DataFrame.Return Type:Returns None if inplace=True.Returns a new DataFrame with reset index if inplace=False.Example: Dropping Index Column from a DataframeTo demonstrate the function we need to first create a DataFrame with custom indexes and then, use reset_index() method with the drop=True option to drop the index column. Python import pandas as pd data = pd.DataFrame({ "id": [7058, 7059, 7072, 7054], "name": ['Sravan', 'Jyothika', 'Harsha', 'Ramya'], "subjects": ['Java', 'Python', 'HTML/PHP', 'PHP/JS'] }) # Set a custom index data.index = ['student-1', 'student-2', 'student-3', 'student-4'] print('DataFrame with Custom Index:') print(data) data.reset_index(drop=True, inplace=True) print('\nDataFrame after Dropping Index:') print(data) Output: DataFrame with Custom Index ColumnExplanation:custom index (student-1, student-2, etc.) is assigned to the DataFrame.reset_index(drop=True, inplace=True) resets the index to the default 0-based integers.drop=True prevents the old index from being added as a separate column.inplace=True ensures the original DataFrame is modified directly.When to Use reset_indexRemoving Unnecessary Indexes: After filtering or manipulating rows, you may end up with non-sequential or unwanted indexes.Default Indexing: Use it when you want to convert the DataFrame back to its default integer index, especially after setting custom indexes.Dropping the index column is a simple and efficient way to reset your DataFrame's index. This method is commonly used when cleaning or reshaping data before analysis.Related articles:PandasDataframeset_index() Comment More infoAdvertise with us Next Article How to Drop Index Column in Pandas? S sravankumar_171fa07058 Follow Improve Article Tags : Python Pandas AI-ML-DS Python-pandas Python pandas-dataFrame pandas-dataframe-program +2 More Practice Tags : python Similar Reads How to Convert Index to Column in Pandas Dataframe? Pandas is a powerful tool which is used for data analysis and is built on top of the python library. The Pandas library enables users to create and manipulate dataframes (Tables of data) and time series effectively and efficiently. These dataframes can be used for training and testing machine learni 2 min read How to Exclude Columns in Pandas? Excluding columns in a Pandas DataFrame is a common operation when you want to work with only relevant data. In this article, we will discuss various methods to exclude columns from a DataFrame, including using .loc[], .drop(), and other techniques.Exclude One Column using .loc[]We can exclude a col 2 min read How to do groupby on a multiindex in Pandas? In this article, we will be showing how to use the groupby on a Multiindex Dataframe in Pandas. In Data science when we are performing exploratory data analysis, we often use groupby to group the data of one column based on the other column. So, we are able to analyze how the data of one column is g 5 min read How to drop one or multiple columns in Pandas DataFrame Let's learn how to drop one or more columns in Pandas DataFrame for data manipulation. Drop Columns Using df.drop() MethodLet's consider an example of the dataset (data) with three columns 'A', 'B', and 'C'. Now, to drop a single column, use the drop() method with the columnâs name.Pythonimport pand 4 min read How to Flatten MultiIndex in Pandas? In this article, we will discuss how to flatten multiIndex in pandas. Flatten all levels of MultiIndex: In this method, we are going to flat all levels of the dataframe by using the reset_index() function. Syntax: dataframe.reset_index(inplace=True) Note: Dataframe is the input dataframe, we have to 3 min read Like