Open In App

How to Select Rows from Pandas DataFrame?

Last Updated : 10 Jul, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
pandas.DataFrame.loc is a function used to select rows from Pandas DataFrame based on the condition provided. In this article, let's learn to select the rows from Pandas DataFrame based on some conditions.
Syntax: df.loc[df['cname'] 'condition'] Parameters: df: represents data frame cname: represents column name condition: represents condition on which rows has to be selected
Example 1: Python3 1==
# Importing pandas as pd
from pandas import DataFrame

# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic', 
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 50000, 30000, 799]
       }

df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])

# Print original data frame
print("Original data frame:\n")
print(df)

# Selecting the product of Electronic Type
select_prod = df.loc[df['Type'] == 'Electronic']

print("\n")

# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)
Output: Example 2: Python3 1==
# Importing pandas as pd
from pandas import DataFrame

# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic',
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 50000, 30000, 799]
       }

df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])

# Print original data frame
print("Original data frame:\n")
print(df)

# Selecting the product of HomeAppliances Type
select_prod = df.loc[df['Type'] == 'HomeAppliances']

print("\n")

# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)
Output: Example 3: Python3 1==
# Importing pandas as pd
from pandas import DataFrame

# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic',
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 50000, 30000, 799]
       }

df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])

# Print original data frame
print("Original data frame:\n")
print(df)

# Selecting the product of Price greater 
# than or equal to 25000
select_prod = df.loc[df['Price'] >= 25000]

print("\n")

# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)
Output: Example 4: Python3 1==
# Importing pandas as pd
from pandas import DataFrame

# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic',
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 30000, 30000, 799]
       }

df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])

# Print original data frame
print("Original data frame:\n")
print(df)

# Selecting the product of Price not 
# equal to 30000
select_prod = df.loc[df['Price'] != 30000]

print("\n")

# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)
Output:

Next Article
Practice Tags :

Similar Reads