Open In App

How to Union Pandas DataFrames using Concat?

Last Updated : 10 Jul, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

concat() function does all of the heavy liftings of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes.

The concat() function combines data frames in one of two ways:

  • Stacked: Axis = 0 (This is the default option).
Axis=0
  • Side by Side: Axis = 1
Axis=1

Steps to Union Pandas DataFrames using Concat:

  • Create the first DataFrame
Python3
import pandas as pd

students1 = {'Class': ['10','10','10'],
            'Name': ['Hari','Ravi','Aditi'],
            'Marks': [80,85,93]
           }

df1 = pd.DataFrame(students1, columns= ['Class','Name','Marks'])

df1

Output: 

  • Create the second DataFrame 
Python3
import pandas as pd

students2 = {'Class': ['10','10','10'],
            'Name': ['Tanmay','Akshita','Rashi'],
            'Marks': [89,91,87]
           }

df2 = pd.DataFrame(students2, 
                   columns= ['Class','Name','Marks'])

df2

Output:

  • Union Pandas DataFrames using Concat 
Python3
pd.concat([df1,df2])

Output: 

Note: You’ll need to keep the same column names across all the DataFrames to avoid any ‘NaN’ values.


Next Article

Similar Reads