Image Segmentation Approaches and Techniques in Computer Vision
Last Updated :
23 Jul, 2025
Image segmentation partitions an image into multiple segments that simplify the image's representation, making it more meaningful and easier to work with. This technique is essential for various applications, from medical imaging and autonomous driving to object detection and image editing. Effective segmentation enables precise identification and localization of objects within an image, facilitating tasks like feature extraction, pattern recognition, and scene understanding.
The article aims to explore the approaches and techniques used for image segmentation in the computer vision domain.
Image Segmentation Approaches
Image segmentation involves partitioning an image into multiple segments to simplify its representation and make it more meaningful and easier to analyze.
Two primary approaches dominate the field of image segmentation:
- Similarity Approach
- Discontinuity Approach
Each approach has its methods and applications, tailored to different types of images and objectives.
Similarity Approach
The similarity approach in image segmentation groups pixels or regions based on their similar properties. This method assumes that regions with similar characteristics should be grouped together.
Common techniques in the similarity approach include:
- Thresholding
- Region Growing
- Clustering (e.g., K-means Clustering, Mean Shift Clustering)
- Graph-Based Segmentation (e.g., Normalized Cuts, Min-Cut/Max-Flow)
Discontinuity Approach
The discontinuity approach focuses on detecting and exploiting abrupt changes in intensity or color to identify boundaries between different regions. This approach is useful for images where regions are defined by clear edges.
Common techniques in the discontinuity approach include:
- Edge Detection (e.g., Sobel Operator, Canny Edge Detector)
- Line Detection (e.g., Hough Transform)
- Corner Detection (e.g., Harris Corner Detector)
These approaches and techniques provide the foundation for effectively segmenting images, making them crucial for various applications in computer vision and image processing.
Five Common Image Segmentation Techniques
Image segmentation is a crucial technique in computer vision, allowing for the division of an image into meaningful segments for easier analysis and interpretation. There are various methods to achieve image segmentation, each with its strengths and applications.
Here, we explore five common image segmentation techniques: threshold-based segmentation, edge-based segmentation, region-based segmentation, clustering-based segmentation, and artificial neural network-based segmentation.
Threshold-based segmentation is one of the simplest and most straightforward image segmentation techniques. It involves converting a grayscale image into a binary image by applying a threshold value. Pixels with intensity values above the threshold are classified into one category, while those below the threshold are classified into another.
Global Thresholding
Global thresholding applies a single threshold value to the entire image. This technique is effective when there is a clear contrast between the objects of interest and the background. For instance, in a document image, global thresholding can effectively separate the text from the white background.
Adaptive Thresholding
Adaptive thresholding, also known as local thresholding, calculates different threshold values for different regions of the image. This approach is useful for images with varying lighting conditions, where a single global threshold would not be effective. Adaptive thresholding ensures better segmentation by considering the local intensity distribution of the pixels.
Otsu's Method
Otsu's method is an automatic thresholding technique that determines the optimal threshold value by minimizing the intra-class variance of the pixel intensity distribution. It is widely used in scenarios where the histogram of the image intensity is bimodal, making it a popular choice for medical imaging and document analysis.
Edge-based segmentation focuses on identifying the boundaries between different regions in an image. This technique detects significant changes in intensity or color, which typically indicate the presence of edges.
Sobel Operator
The Sobel operator is a gradient-based edge detection method that uses convolution with Sobel kernels to approximate the gradient of the image intensity. It highlights regions with high spatial frequency, effectively detecting edges. The Sobel operator is particularly useful for detecting horizontal and vertical edges.
Canny Edge Detector
The Canny edge detector is a multi-stage algorithm that includes noise reduction, gradient calculation, non-maximum suppression, and edge tracking by hysteresis. It is known for its ability to detect a wide range of edges while minimizing false positives. The Canny edge detector is widely used in applications requiring precise edge detection, such as object recognition and medical imaging.
Laplacian of Gaussian (LoG)
The Laplacian of Gaussian (LoG) method combines Gaussian smoothing with the Laplacian operator to detect edges. It involves smoothing the image to reduce noise and then applying the Laplacian operator to highlight regions of rapid intensity change. The LoG method is effective in detecting edges with high accuracy and is commonly used in image enhancement and feature extraction.
Region-based segmentation groups pixels or regions based on their similar properties, such as intensity, color, or texture. This approach assumes that pixels within the same region have similar characteristics.
Region Growing
Region growing starts with a seed point and expands the region by adding neighboring pixels that have similar properties. The process continues until no more pixels can be added. Region growing is simple and intuitive, producing connected regions, but it is sensitive to noise and requires careful selection of seed points.
Region Splitting and Merging
Region splitting and merging is a hierarchical method that involves dividing the image into smaller regions and then merging adjacent regions with similar properties. Initially, the entire image is considered as a single region. The region is then recursively split until the resulting regions are homogeneous. Adjacent regions with similar properties are then merged. This technique is effective in handling complex images with varying intensity levels.
Watershed Segmentation
Watershed segmentation treats the image as a topographic surface, where pixel values represent the elevation. It identifies the catchment basins and ridge lines, segmenting the image into distinct regions. The watershed algorithm is particularly useful for separating overlapping objects in an image, making it popular in medical imaging and object detection.
4. Clustering-Based Image Segmentation
Clustering-based segmentation partitions the image into groups (clusters) of similar pixels. This approach leverages unsupervised learning techniques to classify pixels based on their features, such as color, intensity, or texture.
K-means clustering partitions pixels into K clusters based on their features. It iteratively assigns each pixel to the nearest cluster center and updates the cluster centers to minimize the sum of squared distances between pixels and their corresponding centers. K-means clustering is simple and efficient, making it suitable for various applications, including image compression and color quantization.
Mean Shift Clustering
Mean shift clustering identifies clusters by shifting a window towards regions of higher density, effectively finding the modes of the data distribution. Unlike K-means, mean shift does not require the number of clusters to be specified in advance, making it a flexible and adaptive technique. It is particularly effective in segmenting images with complex distributions of pixel values.
Fuzzy C-means Clustering
Fuzzy C-means clustering extends the K-means algorithm by allowing each pixel to belong to multiple clusters with varying degrees of membership. This approach is beneficial in handling images with ambiguous or overlapping regions, providing a more robust segmentation result. Fuzzy C-means clustering is commonly used in medical imaging and remote sensing.
5. Artificial Neural Network-Based Segmentation
Artificial neural network-based segmentation leverages the power of deep learning to achieve high-precision segmentation results. This approach involves training neural networks on labeled datasets to learn the complex patterns and features within the images.
Convolutional Neural Networks (CNNs) are widely used for image segmentation tasks due to their ability to learn spatial hierarchies of features. CNN-based models, such as U-Net and SegNet, have shown remarkable performance in medical imaging, autonomous driving, and satellite image analysis.
- U-Net : U-Net is a fully convolutional network designed for biomedical image segmentation. It consists of a contracting path to capture context and a symmetric expanding path to enable precise localization. U-Net's architecture allows for the efficient segmentation of high-resolution images with limited training data.
- SegNet : SegNet is another popular CNN-based model for semantic segmentation. It employs an encoder-decoder architecture, where the encoder captures spatial features, and the decoder performs upsampling to generate pixel-wise segmentations. SegNet is effective in applications requiring detailed segmentation, such as urban scene understanding and object detection.
Similar Reads
Computer Vision Tutorial Computer Vision (CV) is a branch of Artificial Intelligence (AI) that helps computers to interpret and understand visual information much like humans. This tutorial is designed for both beginners and experienced professionals and covers key concepts such as Image Processing, Feature Extraction, Obje
7 min read
Introduction to Computer Vision
Computer Vision - IntroductionComputer Vision (CV) in artificial intelligence (AI) help machines to interpret and understand visual information similar to how humans use their eyes and brains. It involves teaching computers to analyze and understand images and videos, helping them "see" the world. From identifying objects in ima
4 min read
A Quick Overview to Computer VisionComputer vision means the extraction of information from images, text, videos, etc. Sometimes computer vision tries to mimic human vision. Itâs a subset of computer-based intelligence or Artificial intelligence which collects information from digital images or videos and analyze them to define the a
3 min read
Applications of Computer VisionHave you ever wondered how machines can "see" and understand the world around them, much like humans do? This is the magic of computer visionâa branch of artificial intelligence that enables computers to interpret and analyze digital images, videos, and other visual inputs. From self-driving cars to
6 min read
Fundamentals of Image FormationImage formation is an analog to digital conversion of an image with the help of 2D Sampling and Quantization techniques that is done by the capturing devices like cameras. In general, we see a 2D view of the 3D world.In the same way, the formation of the analog image took place. It is basically a co
7 min read
Satellite Image ProcessingSatellite Image Processing is an important field in research and development and consists of the images of earth and satellites taken by the means of artificial satellites. Firstly, the photographs are taken in digital form and later are processed by the computers to extract the information. Statist
2 min read
Image FormatsImage formats are different types of file types used for saving pictures, graphics, and photos. Choosing the right image format is important because it affects how your images look, load, and perform on websites, social media, or in print. Common formats include JPEG, PNG, GIF, and SVG, each with it
5 min read
Image Processing & Transformation
Digital Image Processing BasicsDigital Image Processing means processing digital image by means of a digital computer. We can also say that it is a use of computer algorithms, in order to get enhanced image either to extract some useful information. Digital image processing is the use of algorithms and mathematical models to proc
7 min read
Difference Between RGB, CMYK, HSV, and YIQ Color ModelsThe colour spaces in image processing aim to facilitate the specifications of colours in some standard way. Different types of colour models are used in multiple fields like in hardware, in multiple applications of creating animation, etc. Letâs see each colour model and its application. RGBCMYKHSV
3 min read
Image Enhancement Techniques using OpenCV - PythonImage enhancement is the process of improving the quality and appearance of an image. It can be used to correct flaws or defects in an image, or to simply make an image more visually appealing. Image enhancement techniques can be applied to a wide range of images, including photographs, scans, and d
15+ min read
Image Transformations using OpenCV in PythonIn this tutorial, we are going to learn Image Transformation using the OpenCV module in Python. What is Image Transformation? Image Transformation involves the transformation of image data in order to retrieve information from the image or preprocess the image for further usage. In this tutorial we
5 min read
How to find the Fourier Transform of an image using OpenCV Python?The Fourier Transform is a mathematical tool used to decompose a signal into its frequency components. In the case of image processing, the Fourier Transform can be used to analyze the frequency content of an image, which can be useful for tasks such as image filtering and feature extraction. In thi
5 min read
Python | Intensity Transformation Operations on ImagesIntensity transformations are applied on images for contrast manipulation or image thresholding. These are in the spatial domain, i.e. they are performed directly on the pixels of the image at hand, as opposed to being performed on the Fourier transform of the image. The following are commonly used
5 min read
Histogram Equalization in Digital Image ProcessingA digital image is a two-dimensional matrix of two spatial coordinates, with each cell specifying the intensity level of the image at that point. So, we have an N x N matrix with integer values ranging from a minimum intensity level of 0 to a maximum level of L-1, where L denotes the number of inten
5 min read
Python - Color Inversion using PillowColor Inversion (Image Negative) is the method of inverting pixel values of an image. Image inversion does not depend on the color mode of the image, i.e. inversion works on channel level. When inversion is used on a multi color image (RGB, CMYK etc) then each channel is treated separately, and the
4 min read
Image Sharpening using Laplacian, High Boost Filtering in MATLABImage sharpening is a crucial process in digital image processing, aimed at improving the clarity and crispness of visual content. By emphasizing the edges and fine details in a picture, sharpening transforms dull or blurred images into visuals where objects stand out more distinctly from their back
3 min read
Wand sharpen() function - PythonThe sharpen() function is an inbuilt function in the Python Wand ImageMagick library which is used to sharpen the image. Syntax: sharpen(radius, sigma) Parameters: This function accepts four parameters as mentioned above and defined below: radius: This parameter stores the radius value of the sharpn
2 min read
Python OpenCV - Smoothing and BlurringIn this article, we are going to learn about smoothing and blurring with python-OpenCV. When we are dealing with images at some points the images will be crisper and sharper which we need to smoothen or blur to get a clean image, or sometimes the image will be with a really bad edge which also we ne
7 min read
Python PIL | GaussianBlur() methodPIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The ImageFilter module contains definitions for a pre-defined set of filters, which can be used with the Image.filter() method. PIL.ImageFilter.GaussianBlur() method create Gaussian blur filter.
1 min read
Apply a Gauss filter to an image with PythonA Gaussian Filter is a low-pass filter used for reducing noise (high-frequency components) and for blurring regions of an image. This filter uses an odd-sized, symmetric kernel that is convolved with the image. The kernel weights are highest at the center and decrease as you move towards the periphe
2 min read
Spatial Filtering and its TypesSpatial Filtering technique is used directly on pixels of an image. Mask is usually considered to be added in size so that it has specific center pixel. This mask is moved on the image such that the center of the mask traverses all image pixels. Classification on the basis of Linearity There are two
3 min read
Python PIL | MedianFilter() and ModeFilter() methodPIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The ImageFilter module contains definitions for a pre-defined set of filters, which can be used with the Image.filter() method. PIL.ImageFilter.MedianFilter() method creates a median filter. Pick
1 min read
Python | Bilateral FilteringA bilateral filter is used for smoothening images and reducing noise, while preserving edges. This article explains an approach using the averaging filter, while this article provides one using a median filter. However, these convolutions often result in a loss of important edge information, since t
2 min read
Python OpenCV - Morphological OperationsPython OpenCV Morphological operations are one of the Image processing techniques that processes image based on shape. This processing strategy is usually performed on binary images. Morphological operations based on OpenCV are as follows:ErosionDilationOpeningClosingMorphological GradientTop hatBl
5 min read
Erosion and Dilation of images using OpenCV in PythonMorphological operations modify images based on the structure and arrangement of pixels. They apply kernel to an input image for changing its features depending on the arrangement of neighboring pixels. Morphological operations like erosion and dilation are techniques in image processing, especially
3 min read
Introduction to Resampling methodsWhile reading about Machine Learning and Data Science we often come across a term called Imbalanced Class Distribution, which generally happens when observations in one of the classes are much higher or lower than in other classes. As Machine Learning algorithms tend to increase accuracy by reducing
8 min read
Python | Image Registration using OpenCVImage registration is a digital image processing technique that helps us align different images of the same scene. For instance, one may click the picture of a book from various angles. Below are a few instances that show the diversity of camera angles.Now, we may want to "align" a particular image
3 min read
Feature Extraction and Description
Feature Extraction Techniques - NLPIntroduction : This article focuses on basic feature extraction techniques in NLP to analyse the similarities between pieces of text. Natural Language Processing (NLP) is a branch of computer science and machine learning that deals with training computers to process a large amount of human (natural)
10 min read
SIFT Interest Point Detector Using Python - OpenCVSIFT (Scale Invariant Feature Transform) Detector is used in the detection of interest points on an input image. It allows the identification of localized features in images which is essential in applications such as:Â Â Object Recognition in ImagesPath detection and obstacle avoidance algorithmsGest
4 min read
Feature Matching using Brute Force in OpenCVIn this article, we will do feature matching using Brute Force in Python by using OpenCV library. Prerequisites: OpenCV OpenCV is a python library which is used to solve the computer vision problems. OpenCV is an open source Computer Vision library. So computer vision is a way of teaching intelligen
13 min read
Feature detection and matching with OpenCV-PythonIn this article, we are going to see about feature detection in computer vision with OpenCV in Python. Feature detection is the process of checking the important features of the image in this case features of the image can be edges, corners, ridges, and blobs in the images. In OpenCV, there are a nu
5 min read
Feature matching using ORB algorithm in Python-OpenCVORB is a fusion of FAST keypoint detector and BRIEF descriptor with some added features to improve the performance. FAST is Features from Accelerated Segment Test used to detect features from the provided image. It also uses a pyramid to produce multiscale-features. Now it doesnât compute the orient
2 min read
Mahotas - Speeded-Up Robust FeaturesIn this article we will see how we can get the speeded up robust features of image in mahotas. In computer vision, speeded up robust features (SURF) is a patented local feature detector and descriptor. It can be used for tasks such as object recognition, image registration, classification, or 3D rec
2 min read
Create Local Binary Pattern of an image using OpenCV-PythonIn this article, we will discuss the image and how to find a binary pattern using the pixel value of the image. As we all know, image is also known as a set of pixels. When we store an image in computers or digitally, itâs corresponding pixel values are stored. So, when we read an image to a variabl
5 min read
Deep Learning for Computer Vision
Image Classification using CNNImage classification is a key task in machine learning where the goal is to assign a label to an image based on its content. Convolutional Neural Networks (CNNs) are specifically designed to analyze and interpret images. Unlike traditional neural networks, they are good at detecting patterns, shapes
5 min read
What is Transfer Learning?Transfer learning is a machine learning technique where a model trained on one task is repurposed as the foundation for a second task. This approach is beneficial when the second task is related to the first or when data for the second task is limited. Using learned features from the initial task, t
8 min read
Top 5 PreTrained Models in Natural Language Processing (NLP)Pretrained models are deep learning models that have been trained on huge amounts of data before fine-tuning for a specific task. The pre-trained models have revolutionized the landscape of natural language processing as they allow the developer to transfer the learned knowledge to specific tasks, e
7 min read
ML | Introduction to Strided ConvolutionsLet us begin this article with a basic question - "Why padding and strided convolutions are required?" Assume we have an image with dimensions of n x n. If it is convoluted with an f x f filter, then the dimensions of the image obtained are (n-f+1) x (n-f+1). Example: Consider a 6 x 6 image as shown
2 min read
Dilated ConvolutionPrerequisite: Convolutional Neural Networks Dilated Convolution: It is a technique that expands the kernel (input) by inserting holes between its consecutive elements. In simpler terms, it is the same as convolution but it involves pixel skipping, so as to cover a larger area of the input. Dilated
5 min read
Continuous Kernel ConvolutionContinuous Kernel convolution was proposed by the researcher of Verije University Amsterdam in collaboration with the University of Amsterdam in a paper titled 'CKConv: Continuous Kernel Convolution For Sequential Data'. The motivation behind that is to propose a model that uses the properties of co
6 min read
CNN | Introduction to Pooling LayerPooling layer is used in CNNs to reduce the spatial dimensions (width and height) of the input feature maps while retaining the most important information. It involves sliding a two-dimensional filter over each channel of a feature map and summarizing the features within the region covered by the fi
5 min read
CNN | Introduction to PaddingDuring convolution, the size of the output feature map is determined by the size of the input feature map, the size of the kernel, and the stride. if we simply apply the kernel on the input feature map, then the output feature map will be smaller than the input. This can result in the loss of inform
5 min read
What is the difference between 'SAME' and 'VALID' padding in tf.nn.max_pool of tensorflow?Padding is a technique used in convolutional neural networks (CNNs) to preserve the spatial dimensions of the input data and prevent the loss of information at the edges of the image. It involves adding additional rows and columns of pixels around the edges of the input data. There are several diffe
14 min read
Convolutional Neural Network (CNN) ArchitecturesConvolutional Neural Network(CNN) is a neural network architecture in Deep Learning, used to recognize the pattern from structured arrays. However, over many years, CNN architectures have evolved. Many variants of the fundamental CNN Architecture This been developed, leading to amazing advances in t
11 min read
Deep Transfer Learning - IntroductionDeep transfer learning is a machine learning technique that utilizes the knowledge learned from one task to improve the performance of another related task. This technique is particularly useful when there is a shortage of labeled data for the target task, as it allows the model to leverage the know
8 min read
Introduction to Residual NetworksRecent years have seen tremendous progress in the field of Image Processing and Recognition. Deep Neural Networks are becoming deeper and more complex. It has been proved that adding more layers to a Neural Network can make it more robust for image-related tasks. But it can also cause them to lose a
4 min read
Residual Networks (ResNet) - Deep LearningAfter the first CNN-based architecture (AlexNet) that win the ImageNet 2012 competition, Every subsequent winning architecture uses more layers in a deep neural network to reduce the error rate. This works for less number of layers, but when we increase the number of layers, there is a common proble
9 min read
ML | Inception Network V1Inception net achieved a milestone in CNN classifiers when previous models were just going deeper to improve the performance and accuracy but compromising the computational cost. The Inception network, on the other hand, is heavily engineered. It uses a lot of tricks to push performance, both in ter
4 min read
Understanding GoogLeNet Model - CNN ArchitectureGoogLeNet (Inception V1) is a deep convolutional neural network architecture designed for efficient image classification. It introduces the Inception module, which performs multiple convolution operations (1x1, 3x3, 5x5) in parallel, along with max pooling and concatenates their outputs. The archite
3 min read
Image Recognition with MobilenetImage Recognition plays an important role in many fields like medical disease analysis and many more. In this article, we will mainly focus on how to Recognize the given image, what is being displayed. What is MobilenetMobilenet is a model which does the same convolution as done by CNN to filter ima
4 min read
VGG-16 | CNN modelA Convolutional Neural Network (CNN) architecture is a deep learning model designed for processing structured grid-like data such as images and is used for tasks like image classification, object detection and image segmentation.The VGG-16 model is a convolutional neural network (CNN) architecture t
6 min read
Autoencoders in Machine LearningAutoencoders are a special type of neural networks that learn to compress data into a compact form and then reconstruct it to closely match the original input. They consist of an:Encoder that captures important features by reducing dimensionality.Decoder that rebuilds the data from this compressed r
8 min read
How Autoencoders works ?Autoencoders is used for tasks like dimensionality reduction, anomaly detection and feature extraction. The goal of an autoencoder is to to compress data into a compact form and then reconstruct it to closely match the original input. The model trains by minimizing reconstruction error using loss fu
6 min read
Difference Between Encoder and DecoderCombinational Logic is the concept in which two or more input states define one or more output states. The Encoder and Decoder are combinational logic circuits. In which we implement combinational logic with the help of boolean algebra. To encode something is to convert in piece of information into
9 min read
Implementing an Autoencoder in PyTorchAutoencoders are neural networks designed for unsupervised tasks like dimensionality reduction, anomaly detection and feature extraction. They work by compressing data into a smaller form through an encoder and then reconstructing it back using a decoder. The goal is to minimize the difference betwe
4 min read
Generative Adversarial Network (GAN)Generative Adversarial Networks (GAN) help machines to create new, realistic data by learning from existing examples. It is introduced by Ian Goodfellow and his team in 2014 and they have transformed how computers generate images, videos, music and more. Unlike traditional models that only recognize
12 min read
Deep Convolutional GAN with KerasDeep Convolutional GAN (DCGAN) was proposed by a researcher from MIT and Facebook AI research. It is widely used in many convolution-based generation-based techniques. The focus of this paper was to make training GANs stable. Hence, they proposed some architectural changes in the computer vision pro
9 min read
StyleGAN - Style Generative Adversarial NetworksStyleGAN is a generative model that produces highly realistic images by controlling image features at multiple levels from overall structure to fine details like texture and lighting. It is developed by NVIDIA and builds on traditional GANs with a unique architecture that separates style from conten
5 min read
Object Detection and Recognition
Image Segmentation
3D Reconstruction
Python OpenCV - Depth map from Stereo ImagesOpenCV is the huge open-source library for the computer vision, machine learning, and image processing and now it plays a major role in real-time operation which is very important in todayâs systems.Note: For more information, refer to Introduction to OpenCV Depth Map : A depth map is a picture wher
2 min read
Top 7 Modern-Day Applications of Augmented Reality (AR)Augmented Reality (or AR), in simpler terms, means intensifying the reality of real-time objects which we see through our eyes or gadgets like smartphones. You may think, How is it trending a lot? The answer is that it can offer an unforgettable experience, either of learning, measuring the three-di
10 min read
Virtual Reality, Augmented Reality, and Mixed RealityVirtual Reality (VR): The word 'virtual' means something that is conceptual and does not exist physically and the word 'reality' means the state of being real. So the term 'virtual reality' is itself conflicting. It means something that is almost real. We will probably never be on the top of Mount E
3 min read
Camera Calibration with Python - OpenCVPrerequisites: OpenCV A camera is an integral part of several domains like robotics, space exploration, etc camera is playing a major role. It helps to capture each and every moment and helpful for many analyses. In order to use the camera as a visual sensor, we should know the parameters of the cam
4 min read
Python OpenCV - Pose EstimationWhat is Pose Estimation? Pose estimation is a computer vision technique that is used to predict the configuration of the body(POSE) from an image. The reason for its importance is the abundance of applications that can benefit from technology. Human pose estimation localizes body key points to accu
7 min read
40+ Top Computer Vision Projects [2025 Updated] Computer Vision is a branch of Artificial Intelligence (AI) that helps computers understand and interpret context of images and videos. It is used in domains like security cameras, photo editing, self-driving cars and robots to recognize objects and navigate real world using machine learning.This ar
4 min read