Introduction to Dynamic Programming on Trees
Last Updated :
04 Dec, 2024
Dynamic Programming is a technique to solve problems by breaking them down into overlapping sub-problems which follows the optimal substructure. There are various problems using DP like subset sum, knapsack, coin change etc. DP can also be applied to trees to solve some specific problems.
Given a binary tree with n nodes and n-1 edges, calculate the maximum sum of the node values from the root to any of the leaves without re-visiting any node.
Examples:
Input:
Output: 22
Explanation: Given above is a diagram of a tree with n = 14 nodes and n-1 = 13 edges.The below shows all the paths from root to leaves:
- 3 -> 2 -> 1 -> 4: sum of all node values = 10
- 3 -> 2 -> 1 -> 5: sum of all node values = 11
- 3 -> 2 -> 3: sum of all node values = 8
- 3 -> 1 -> 9 -> 9: sum of all node values = 22
- 3 -> 1 -> 9 -> 8 : sum of all node values = 21
- 3 -> 10 -> 1: sum of all node values = 14
- 3 -> 10 -> 5 : sum of all node values = 18
- 3 -> 10 -> 3 : sum of all node values = 16
The answer is 22, as Path 4 has the maximum sum of values of nodes in its path from a root to leaves.
The greedy approach fails in this case. Starting from the root and take 3 from the first level, 10 from the next level and 5 from the third level greedily. Result is path -7 if after following the greedy approach, hence do not apply greedy approach over here.
Using Recursion - O(n) Time and O(h) Space
For the recursive approach, the task is to calculate the maximum sum from the root to any leaf node. At each node, there are two cases:
- Add the value of the current node to the currentSum and proceed to its left and right children recursively.
- If the node is a leaf (both left and right children are null), compare the currentSum with the maxSum. Update maxSum if currentSum is greater.
Mathematically, the recurrence relation can be expressed as:
- maxSumPath(node) = node->data + max(maxSumPath(node->left), maxSumPath(node->right))
Base Case:
If the current node is nullptr, return from the recursion (no addition to the sum is possible).
C++
// C++ code to calculate the maximum sum from root
// to leaf node using recursion.
#include <iostream>
#include <vector>
using namespace std;
class Node {
public:
int data;
Node *left;
Node *right;
Node(int x) {
data = x;
left = right = nullptr;
}
};
// Helper function to find maximum sum path
void maxSumPath(Node *node, int currentSum, int &maxSum) {
if (node == nullptr) {
return;
}
// Add current node's data to the path sum
currentSum += node->data;
// Check if leaf node is reached, update maxSum
if (node->left == nullptr && node->right == nullptr) {
if (currentSum > maxSum) {
maxSum = currentSum;
}
}
else {
// Recurse for left and right subtrees
maxSumPath(node->left, currentSum, maxSum);
maxSumPath(node->right, currentSum, maxSum);
}
}
// Function to get the maximum sum from root to any leaf
int maxRootToLeafSum(Node *root) {
int maxSum = 0;
maxSumPath(root, 0, maxSum);
return maxSum;
}
int main() {
// Harcoded binary tree
// 1
// / \
// 2 3
// /\ /
// 4 5 6
Node *root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->left = new Node(6);
cout << maxRootToLeafSum(root) << endl;
return 0;
}
Java
// Java code to calculate the maximum sum from root
// to leaf node using recursion.
import java.util.*;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
static void maxSumPath(Node node, int currentSum,
int[] maxSum) {
if (node == null) {
return;
}
// Add current node's data to the path sum
currentSum += node.data;
// Check if leaf node is reached, update maxSum
if (node.left == null && node.right == null) {
if (currentSum > maxSum[0]) {
maxSum[0] = currentSum;
}
}
else {
// Recurse for left and right subtrees
maxSumPath(node.left, currentSum, maxSum);
maxSumPath(node.right, currentSum, maxSum);
}
}
// Function to get the maximum sum from
// root to any leaf
static int maxRootToLeafSum(Node root) {
int[] maxSum = {0};
maxSumPath(root, 0, maxSum);
return maxSum[0];
}
public static void main(String[] args) {
// Hardcoded binary tree
// 1
// / \
// 2 3
// /\ /
// 4 5 6
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
System.out.print(maxRootToLeafSum(root));
}
}
Python
# Python code to calculate the maximum sum from root
# to leaf node using recursion.
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
# Helper function to find maximum sum path
def max_sum_path(node, current_sum, max_sum):
if node is None:
return
# Add current node's data to the path sum
current_sum += node.data
# Check if leaf node is reached, update max_sum
if node.left is None and node.right is None:
max_sum[0] = max(max_sum[0], current_sum)
else:
# Recurse for left and right subtrees
max_sum_path(node.left, current_sum, max_sum)
max_sum_path(node.right, current_sum, max_sum)
# Function to get the maximum sum from root to any leaf
def max_root_to_leaf_sum(root):
max_sum = [0]
max_sum_path(root, 0, max_sum)
return max_sum[0]
if __name__ == "__main__":
# Hardcoded binary tree
# 1
# / \
# 2 3
# / \ /
# 4 5 6
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.left = Node(6)
print(max_root_to_leaf_sum(root))
C#
// C# code to calculate the maximum sum from root
// to leaf node using recursion.
using System;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
// Helper function to find maximum sum path
static void MaxSumPath(Node node,
int currentSum, int[] maxSum) {
if (node == null) {
return;
}
// Add current node's data to the path sum
currentSum += node.data;
// Check if leaf node is reached, update maxSum
if (node.left == null && node.right == null) {
if (currentSum > maxSum[0]) {
maxSum[0] = currentSum;
}
}
else {
// Recurse for left and right subtrees
MaxSumPath(node.left, currentSum, maxSum);
MaxSumPath(node.right, currentSum, maxSum);
}
}
// Function to get the maximum sum from root to any leaf
static int MaxRootToLeafSum(Node root) {
int[] maxSum = {0};
MaxSumPath(root, 0, maxSum);
return maxSum[0];
}
static void Main(string[] args) {
// Hardcoded binary tree
// 1
// / \
// 2 3
// / \ /
// 4 5 6
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
Console.WriteLine(MaxRootToLeafSum(root));
}
}
JavaScript
// JavaScript code to calculate the maximum sum
// from root to leaf node using recursion.
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Helper function to find the maximum sum path
function maxSumPath(node, currentSum, maxSum) {
if (node === null) {
return;
}
// Add current node's data to the path sum
currentSum += node.data;
// Check if leaf node is reached, update maxSum
if (node.left === null && node.right === null) {
if (currentSum > maxSum[0]) {
maxSum[0] = currentSum;
}
} else {
// Recurse for left and right subtrees
maxSumPath(node.left, currentSum, maxSum);
maxSumPath(node.right, currentSum, maxSum);
}
}
// Function to get the maximum sum from root to any leaf
function maxRootToLeafSum(root) {
let maxSum = [0];
maxSumPath(root, 0, maxSum);
return maxSum[0];
}
// Hardcoded binary tree
// 1
// / \
// 2 3
// / \ /
// 4 5 6
const root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
console.log(maxRootToLeafSum(root));
Using Top-Down DP (Memoization) - O(n) Time and O(n) Space
1. Optimal Substructure: The solution to the maximum sum problem can be derived from the optimal solutions of smaller subproblems. At any given node, the maximum path sum is the sum of the node’s value and the maximum of the sums obtained from its left and right children.
2. Overlapping Subproblems: The maximum sum for a node may be recomputed multiple times. Using a memoization table we:
- Check if the result for a node exists.If not, compute and store it.
- This avoids redundant calculations and ensures each node is processed once.
Memoization Condition: If the result for the current node is already stored in the memoization table:
- if memo[node] exists, return memo[node]
C++
// C++ code to calculate the maximum sum from root
// to leaf node using recursion and memoization.
#include <iostream>
#include <unordered_map>
using namespace std;
class Node {
public:
int data;
Node *left;
Node *right;
Node(int x) {
data = x;
left = right = nullptr;
}
};
// Helper function to find maximum sum path with memoization
int maxSumPath(Node *node, unordered_map<Node*, int> &memo) {
if (node == nullptr) {
return 0;
}
// Check if the result is already in memo
if (memo.find(node) != memo.end()) {
return memo[node];
}
// If it's a leaf node, the maximum sum is its own data
if (node->left == nullptr && node->right == nullptr) {
return memo[node] = node->data;
}
// Recurse for left and right subtrees and
// choose the maximum path
int leftSum = maxSumPath(node->left, memo);
int rightSum = maxSumPath(node->right, memo);
// Store the computed result in memo
memo[node] = node->data + max(leftSum, rightSum);
return memo[node];
}
// Function to get the maximum sum from root to any leaf
int maxRootToLeafSum(Node *root) {
unordered_map<Node*, int> memo;
return maxSumPath(root, memo);
}
int main() {
// Hardcoded binary tree
// 1
// / \
// 2 3
// /\ /
// 4 5 6
Node *root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->left = new Node(6);
cout << maxRootToLeafSum(root) << endl;
return 0;
}
Java
// Java code to calculate the maximum sum from root
// to leaf node using recursion and memoization.
import java.util.HashMap;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
// Helper function to find maximum sum path with memoization
static int maxSumPath(Node node,
HashMap<Node, Integer> memo) {
if (node == null) {
return 0;
}
// Check if the result is already in memo
if (memo.containsKey(node)) {
return memo.get(node);
}
// If it's a leaf node, the maximum sum is its own data
if (node.left == null && node.right == null) {
memo.put(node, node.data);
return node.data;
}
// Recurse for left and right subtrees and
// choose the maximum path
int leftSum = maxSumPath(node.left, memo);
int rightSum = maxSumPath(node.right, memo);
// Store the computed result in memo
int result = node.data + Math.max(leftSum, rightSum);
memo.put(node, result);
return result;
}
// Function to get the maximum sum from root to any leaf
static int maxRootToLeafSum(Node root) {
HashMap<Node, Integer> memo = new HashMap<>();
return maxSumPath(root, memo);
}
public static void main(String[] args) {
// Hardcoded binary tree
// 1
// / \
// 2 3
// /\ /
// 4 5 6
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
System.out.print(maxRootToLeafSum(root));
}
}
Python
# Python code to calculate the maximum sum from root
# to leaf node recursion and memoization.
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Helper function to find maximum sum
# path with memoization
def max_sum_path(node, memo):
if node is None:
return 0
# Check if the result is already in memo
if node in memo:
return memo[node]
# If it's a leaf node, the maximum sum
# is its own data
if node.left is None and node.right is None:
memo[node] = node.data
return memo[node]
# Recurse for left and right subtrees and
# choose the maximum path
left_sum = max_sum_path(node.left, memo)
right_sum = max_sum_path(node.right, memo)
# Store the computed result in memo
memo[node] = node.data + max(left_sum, right_sum)
return memo[node]
# Function to get the maximum sum from root to any leaf
def max_root_to_leaf_sum(root):
memo = {}
return max_sum_path(root, memo)
if __name__ == "__main__":
# Hardcoded binary tree
# 1
# / \
# 2 3
# /\ /
# 4 5 6
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.left = Node(6)
print(max_root_to_leaf_sum(root))
C#
// C# code to calculate the maximum sum from root
// to leaf node using recursion and memoization.
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = right = null;
}
}
class GfG {
// Helper function to find maximum sum path with memoization
static int MaxSumPath(Node node, Dictionary<Node, int> memo) {
if (node == null) {
return 0;
}
// Check if the result is already in memo
if (memo.ContainsKey(node)) {
return memo[node];
}
// If it's a leaf node, the maximum sum is its own data
if (node.left == null && node.right == null) {
memo[node] = node.data;
return node.data;
}
// Recurse for left and right subtrees and choose the maximum path
int leftSum = MaxSumPath(node.left, memo);
int rightSum = MaxSumPath(node.right, memo);
// Store the computed result in memo
int result = node.data + Math.Max(leftSum, rightSum);
memo[node] = result;
return result;
}
// Function to get the maximum sum from root to any leaf
static int MaxRootToLeafSum(Node root) {
Dictionary<Node, int> memo
= new Dictionary<Node, int>();
return MaxSumPath(root, memo);
}
static void Main(string[] args) {
// Hardcoded binary tree
// 1
// / \
// 2 3
// /\ /
// 4 5 6
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
Console.WriteLine(MaxRootToLeafSum(root));
}
}
JavaScript
// JavaScript code to calculate the maximum sum from root
// to leaf node using recursion and memoization.
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Helper function to find maximum sum
// path with memoization
function maxSumPath(node, memo) {
if (node === null) {
return 0;
}
// Check if the result is already in memo
if (memo.has(node)) {
return memo.get(node);
}
// If it's a leaf node, the maximum sum is its own data
if (node.left === null && node.right === null) {
memo.set(node, node.data);
return node.data;
}
// Recurse for left and right subtrees and
// choose the maximum path
const leftSum = maxSumPath(node.left, memo);
const rightSum = maxSumPath(node.right, memo);
// Store the computed result in memo
const result = node.data + Math.max(leftSum, rightSum);
memo.set(node, result);
return result;
}
// Function to get the maximum sum from root to any leaf
function maxRootToLeafSum(root) {
const memo = new Map();
return maxSumPath(root, memo);
}
// Hardcoded binary tree
// 1
// / \
// 2 3
// /\ /
// 4 5 6
const root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
console.log(maxRootToLeafSum(root));
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem