Java Program for Maximum equilibrium sum in an array
Last Updated :
31 Jan, 2022
Given an array arr[]. Find the maximum value of prefix sum which is also suffix sum for index i in arr[].
Examples :
Input : arr[] = {-1, 2, 3, 0, 3, 2, -1}
Output : 4
Prefix sum of arr[0..3] =
Suffix sum of arr[3..6]
Input : arr[] = {-2, 5, 3, 1, 2, 6, -4, 2}
Output : 7
Prefix sum of arr[0..3] =
Suffix sum of arr[3..7]
A Simple Solution is to one by one check the given condition (prefix sum equal to suffix sum) for every element and returns the element that satisfies the given condition with maximum value.
Java
// java program to find maximum
// equilibrium sum.
import java.io.*;
class GFG {
// Function to find maximum
// equilibrium sum.
static int findMaxSum(int []arr, int n)
{
int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++)
{
int prefix_sum = arr[i];
for (int j = 0; j < i; j++)
prefix_sum += arr[j];
int suffix_sum = arr[i];
for (int j = n - 1; j > i; j--)
suffix_sum += arr[j];
if (prefix_sum == suffix_sum)
res = Math.max(res, prefix_sum);
}
return res;
}
// Driver Code
public static void main (String[] args)
{
int arr[] = {-2, 5, 3, 1, 2, 6, -4, 2 };
int n = arr.length;
System.out.println(findMaxSum(arr, n));
}
}
// This code is contributed by anuj_67.
Time Complexity: O(n2)
Auxiliary Space: O(n)
A Better Approach is to traverse the array and store prefix sum for each index in array presum[], in which presum[i] stores sum of subarray arr[0..i]. Do another traversal of the array and store suffix sum in another array suffsum[], in which suffsum[i] stores sum of subarray arr[i..n-1]. After this for each index check if presum[i] is equal to suffsum[i] and if they are equal then compare their value with the overall maximum so far.
Java
// Java program to find maximum equilibrium sum.
import java.io.*;
public class GFG {
// Function to find maximum
// equilibrium sum.
static int findMaxSum(int []arr, int n)
{
// Array to store prefix sum.
int []preSum = new int[n];
// Array to store suffix sum.
int []suffSum = new int[n];
// Variable to store maximum sum.
int ans = Integer.MIN_VALUE;
// Calculate prefix sum.
preSum[0] = arr[0];
for (int i = 1; i < n; i++)
preSum[i] = preSum[i - 1] + arr[i];
// Calculate suffix sum and compare
// it with prefix sum. Update ans
// accordingly.
suffSum[n - 1] = arr[n - 1];
if (preSum[n - 1] == suffSum[n - 1])
ans = Math.max(ans, preSum[n - 1]);
for (int i = n - 2; i >= 0; i--)
{
suffSum[i] = suffSum[i + 1] + arr[i];
if (suffSum[i] == preSum[i])
ans = Math.max(ans, preSum[i]);
}
return ans;
}
// Driver Code
static public void main (String[] args)
{
int []arr = { -2, 5, 3, 1, 2, 6, -4, 2 };
int n = arr.length;
System.out.println( findMaxSum(arr, n));
}
}
// This code is contributed by anuj_67
Time Complexity: O(n)
Auxiliary Space: O(n)
Further Optimization :
We can avoid the use of extra space by first computing the total sum, then using it to find the current prefix and suffix sums.
Java
// Java program to find maximum equilibrium
// sum.
import java.lang.Math.*;
import java.util.stream.*;
class GFG {
// Function to find maximum equilibrium
// sum.
static int findMaxSum(int arr[], int n)
{
int sum = IntStream.of(arr).sum();
int prefix_sum = 0,
res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++)
{
prefix_sum += arr[i];
if (prefix_sum == sum)
res = Math.max(res, prefix_sum);
sum -= arr[i];
}
return res;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { -2, 5, 3, 1,
2, 6, -4, 2 };
int n = arr.length;
System.out.print(findMaxSum(arr, n));
}
}
// This code is contributed by Smitha.
Time Complexity: O(n)
Auxiliary Space: O(1)
Please refer complete article on Maximum equilibrium sum in an array for more details!
Similar Reads
Javascript Program for Maximum equilibrium sum in an array Given an array arr[]. Find the maximum value of prefix sum which is also suffix sum for index i in arr[].Examples : Input : arr[] = {-1, 2, 3, 0, 3, 2, -1}Output : 4Prefix sum of arr[0..3] = Suffix sum of arr[3..6]Input : arr[] = {-2, 5, 3, 1, 2, 6, -4, 2}Output : 7Prefix sum of arr[0..3] = Suffix s
3 min read
Maximum equilibrium sum in an array Given an array arr[]. Find the maximum value of prefix sum which is also suffix sum for index i in arr[].Examples : Input : arr[] = {-1, 2, 3, 0, 3, 2, -1}Output : 4Explanation : Prefix sum of arr[0..3] = Suffix sum of arr[3..6]Input : arr[] = {-3, 5, 3, 1, 2, 6, -4, 2}Output : 7Explanation : Prefix
11 min read
Javascript Program for Equilibrium index of an array Write a function int equilibrium(int[] arr, int n); that given a sequence arr[] of size n, returns an equilibrium index (if any) or -1 if no equilibrium indexes exist. The equilibrium index of an array is an index such that the sum of elements at lower indexes is equal to the sum of elements at high
5 min read
Java Program for Largest Sum Contiguous Subarray Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers that has the largest sum. Recommended: Please solve it on âPRACTICE â first, before moving on to the solution. Kadane's Algorithm: Initialize: max_so_far = INT_MIN max_ending_here = 0 Loop for
5 min read
Maximum subarray sum with same first and last element formed by removing elements Given an array arr[] of N integers, the task is to find the maximum sum of subarray having length an at least 2 whose first and last elements are the same after removing any number of array elements. If there exists no such array, then print 0. Examples: Input: arr[] = {-1, -3, -2, 4, -1, 3}Output:
6 min read
Equilibrium Index Given an array arr[] of size n, the task is to return an equilibrium index (if any) or -1 if no equilibrium index exists. The equilibrium index of an array is an index such that the sum of all elements at lower indexes equals the sum of all elements at higher indexes. Note: When the index is at the
15 min read