K-th Element of Merged Two Sorted Arrays
Last Updated :
23 Jul, 2025
Given two sorted arrays of sizes m and n respectively, the task is to find the element that would be at the k-th position in the final sorted array formed by merging these two arrays.
Examples:
Input: a[] = [2, 3, 6, 7, 9], b[] = [1, 4, 8, 10], k = 5
Output: 6
Explanation: The final sorted array is [1, 2, 3, 4, 6, 7, 8, 9, 10]. The 5th element is 6.
Input: a[] = [100, 112, 256, 349, 770], b[] = [72, 86, 113, 119, 265, 445, 892], k = 7
Output: 256
Explanation: The final sorted array is [72, 86, 100, 112, 113, 119, 256, 265, 349, 445, 770, 892]. The 7th element is 256.
Using Sorting - O((m + n) * log(m + n)) Time and O(m + n) Space
The idea is to create a new array by merging elements from both arrays (a[]
and b[]
), then sort the new array, and finally return the kth smallest element from the sorted array.
C++
#include <bits/stdc++.h>
using namespace std;
int kthElement(vector<int> &a, vector<int> &b, int k) {
// to merge both the arrays
vector<int> arr;
// add the elements of array a
for(auto i: a)
arr.push_back(i);
// add the elements of array a
for(auto i: b)
arr.push_back(i);
// sort the merged array
sort(arr.begin(), arr.end());
// return the kth element
return arr[k-1];
}
int main() {
vector<int> a = {2, 3, 6, 7, 9};
vector<int> b = {1, 4, 8, 10};
int k = 5;
cout << kthElement(a, b, k);
return 0;
}
Java
// Function for finding kth element
import java.util.*;
class GfG {
// Function for finding kth element
static int kthElement(int[] a, int[] b, int k) {
// to merge both the arrays
ArrayList<Integer> arr = new ArrayList<>();
// add the elements of array a
for (int i : a)
arr.add(i);
// add the elements of array b
for (int i : b)
arr.add(i);
// sort the merged array
Collections.sort(arr);
// return the kth element
return arr.get(k - 1);
}
public static void main(String[] args) {
int[] a = {2, 3, 6, 7, 9};
int[] b = {1, 4, 8, 10};
int k = 5;
System.out.println(kthElement(a, b, k));
}
}
Python
# Function for finding kth element
def kthElement(a, b, k):
# to merge both the arrays
arr = []
# add the elements of array a
for i in a:
arr.append(i)
# add the elements of array b
for i in b:
arr.append(i)
# sort the merged array
arr.sort()
# return the kth element
return arr[k - 1]
if __name__ == "__main__":
a = [2, 3, 6, 7, 9]
b = [1, 4, 8, 10]
k = 5
print(kthElement(a, b, k))
C#
// Function for finding kth element
using System;
using System.Collections.Generic;
class GfG {
// Function for finding kth element
static int kthElement(int[] a, int[] b, int k) {
// to merge both the arrays
List<int> arr = new List<int>();
// add the elements of array a
foreach (int i in a)
arr.Add(i);
// add the elements of array b
foreach (int i in b)
arr.Add(i);
// sort the merged array
arr.Sort();
// return the kth element
return arr[k - 1];
}
static void Main() {
int[] a = {2, 3, 6, 7, 9};
int[] b = {1, 4, 8, 10};
int k = 5;
Console.WriteLine(kthElement(a, b, k));
}
}
JavaScript
// Function for finding kth element
function kthElement(a, b, k) {
// to merge both the arrays
let arr = [];
// add the elements of array a
for (let i of a)
arr.push(i);
// add the elements of array b
for (let i of b)
arr.push(i);
// sort the merged array
arr.sort((x, y) => x - y);
// return the kth element
return arr[k - 1];
}
let a = [2, 3, 6, 7, 9];
let b = [1, 4, 8, 10];
let k = 5;
console.log(kthElement(a, b, k));
Using Priority Queue - O((m + n + k) * log(m + n)) Time and O(m + n) Space
The idea is to build a min heap to store all the elements of both the arrays in sorted order, and then extract the first k elements to get the kth smallest element of the merge array.
C++
#include <bits/stdc++.h>
using namespace std;
int kthElement(vector<int> &a, vector<int> &b, int k) {
// to store the elements of both
// the arrays in sorted order
priority_queue<int, vector<int>, greater<int>> pq;
// add the elements of array a
for(auto i: a)
pq.push(i);
// add the elements of array a
for(auto i: b)
pq.push(i);
// pop the elements from the heap
// till k-1 elements are popped
while(k-- > 1)
pq.pop();
// return the kth element
return pq.top();
}
int main() {
vector<int> a = {2, 3, 6, 7, 9};
vector<int> b = {1, 4, 8, 10};
int k = 5;
cout << kthElement(a, b, k);
return 0;
}
Java
// Function for finding kth element
import java.util.*;
class GfG {
// Function for finding kth element
static int kthElement(int[] a, int[] b, int k) {
// to store the elements of both
// the arrays in sorted order
PriorityQueue<Integer> pq = new PriorityQueue<>();
// add the elements of array a
for (int i : a)
pq.add(i);
// add the elements of array a
for (int i : b)
pq.add(i);
// pop the elements from the heap
// till k-1 elements are popped
while (k-- > 1)
pq.poll();
// return the kth element
return pq.peek();
}
public static void main(String[] args) {
int[] a = {2, 3, 6, 7, 9};
int[] b = {1, 4, 8, 10};
int k = 5;
System.out.println(kthElement(a, b, k));
}
}
Python
# Function for finding kth element
import heapq
def kthElement(a, b, k):
# to store the elements of both
# the arrays in sorted order
pq = []
# add the elements of array a
for i in a:
heapq.heappush(pq, i)
# add the elements of array a
for i in b:
heapq.heappush(pq, i)
# pop the elements from the heap
# till k-1 elements are popped
while k > 1:
heapq.heappop(pq)
k -= 1
# return the kth element
return pq[0]
if __name__ == "__main__":
a = [2, 3, 6, 7, 9]
b = [1, 4, 8, 10]
k = 5
print(kthElement(a, b, k))
JavaScript
// Function for finding kth element
function kthElement(a, b, k) {
// to store the elements of both
// the arrays in sorted order
let pq = [];
// add the elements of array a
for (let i of a)
pq.push(i);
// add the elements of array a
for (let i of b)
pq.push(i);
// sort the merged array in ascending order
pq.sort((x, y) => x - y);
// pop the elements from the heap
// till k-1 elements are popped
while (k-- > 1)
pq.shift();
// return the kth element
return pq[0];
}
let a = [2, 3, 6, 7, 9];
let b = [1, 4, 8, 10];
let k = 5;
console.log(kthElement(a, b, k));
Using Merge Step of Merge Sort - O(m + n) Time and O(m + n) Space
The basic idea here is to merge the given two arrays into a single sorted array and then simply return the element at the kth position. This approach is straightforward because it directly uses the merging process of two sorted arrays, similar to the merge step in the merge sort algorithm.
Step-by-step approach:
- We initialize three pointers: two pointers to traverse each array and one to keep track of the position in the merged array.
- By comparing the elements pointed to by the two array pointers, we place the smaller element into the merged array and move the respective pointer forward.
- This continues until one of the arrays is fully traversed.
- If any elements remain in either array, they are directly appended to the merged array.
- Finally, the k-th element of this merged array is returned.
C++
// C++ program to find K-th Element of Merged Two Sorted Arrays
// Using merge step of merge sort
#include <bits/stdc++.h>
using namespace std;
int kthElement(vector<int> &a, vector<int> &b, int k) {
int n = a.size(), m = b.size();
// array to store the merged sorted array
vector<int> arr(n + m);
int i = 0, j = 0, d = 0;
while (i < n && j < m) {
// If the element of a[] is smaller, insert the
// element to the sorted array
if (a[i] < b[j])
arr[d++] = a[i++];
// If the element of b[] is smaller, insert the
// element to the sorted array
else
arr[d++] = b[j++];
}
// Push the remaining elements of a[]
while (i < n)
arr[d++] = a[i++];
// Push the remaining elements of b[]
while (j < m)
arr[d++] = b[j++];
return arr[k - 1];
}
int main() {
vector<int> a = {2, 3, 6, 7, 9};
vector<int> b = {1, 4, 8, 10};
int k = 5;
cout << kthElement(a, b, k);
return 0;
}
Java
// Java Program to find K-th Element of Merged Two Sorted Arrays
// Using merge step of merge sort
class GfG {
static int kthElement(int[] a, int[] b, int k) {
int n = a.length, m = b.length;
// array to store the merged sorted array
int[] arr = new int[n + m];
int i = 0, j = 0, d = 0;
while (i < n && j < m) {
// If the element of a[] is smaller, insert the
// element to the sorted array
if (a[i] < b[j]) {
arr[d++] = a[i++];
}
// If the element of b[] is smaller, insert the
// element to the sorted array
else {
arr[d++] = b[j++];
}
}
// Push the remaining elements of a[]
while (i < n) {
arr[d++] = a[i++];
}
// Push the remaining elements of b[]
while (j < m) {
arr[d++] = b[j++];
}
return arr[k - 1];
}
public static void main(String[] args) {
int[] a = {2, 3, 6, 7, 9};
int[] b = {1, 4, 8, 10};
int k = 5;
System.out.println(kthElement(a, b, k));
}
}
Python
# Python Program to find K-th Element of Merged Two Sorted Arrays
# Using merge step of merge sort
def kthElement(a, b, k):
n = len(a)
m = len(b)
# array to store the merged sorted array
arr = [0] * (n + m)
i = 0
j = 0
d = 0
while i < n and j < m:
# If the element of a[] is smaller, insert the
# element to the sorted array
if a[i] < b[j]:
arr[d] = a[i]
i += 1
# If the element of b[] is smaller, insert the
# element to the sorted array
else:
arr[d] = b[j]
j += 1
d += 1
# Push the remaining elements of a[]
while i < n:
arr[d] = a[i]
i += 1
d += 1
# Push the remaining elements of b[]
while j < m:
arr[d] = b[j]
j += 1
d += 1
return arr[k - 1]
if __name__ == "__main__":
arr1 = [2, 3, 6, 7, 9]
arr2 = [1, 4, 8, 10]
k = 5
print(kthElement(arr1, arr2, k))
C#
// C# program to find K-th Element of Merged Two Sorted Arrays
// Using merge step of merge sort
using System;
class GfG {
static int kthElement(int[] a, int[] b, int k) {
int n = a.Length, m = b.Length;
// array to store the merged sorted array
int[] arr = new int[n + m];
int i = 0, j = 0, d = 0;
while (i < n && j < m) {
// If the element of a[] is smaller, insert the
// element to the sorted array
if (a[i] < b[j])
arr[d++] = a[i++];
// If the element of b[] is smaller, insert the
// element to the sorted array
else
arr[d++] = b[j++];
}
// Push the remaining elements of a[]
while (i < n)
arr[d++] = a[i++];
// Push the remaining elements of b[]
while (j < m)
arr[d++] = b[j++];
return arr[k - 1];
}
static void Main() {
int[] a = { 2, 3, 6, 7, 9 };
int[] b = { 1, 4, 8, 10 };
int k = 5;
Console.WriteLine(kthElement(a, b, k));
}
}
JavaScript
// JavaScript program to find K-th Element of Merged Two Sorted Arrays
// Using merge step of merge sort
function kthElement(a, b, k) {
const n = a.length, m = b.length;
// array to store the merged sorted array
let arr = new Array(n + m);
let i = 0, j = 0, d = 0;
while (i < n && j < m) {
// If the element of a[] is smaller, insert the
// element to the sorted array
if (a[i] < b[j])
arr[d++] = a[i++];
// If the element of b[] is smaller, insert the
// element to the sorted array
else
arr[d++] = b[j++];
}
// Push the remaining elements of a[]
while (i < n)
arr[d++] = a[i++];
// Push the remaining elements of b[]
while (j < m)
arr[d++] = b[j++];
return arr[k - 1];
}
// Driver code
let a = [2, 3, 6, 7, 9];
let b = [1, 4, 8, 10];
let k = 5;
console.log(kthElement(a, b, k));
Using Optimized Merge of Merge Sort - O(k) Time and O(1) Space
This approach optimizes the space complexity of the above approach by avoiding the creation of an additional array. Instead, we use two pointers to traverse the input arrays and count the elements until we reach the kth element. This method is more efficient in terms of space since it only uses a constant amount of extra memory.
We start with two pointers at the beginning of each array and another counter to keep track of the number of elements processed. By comparing the current elements of both arrays, the smaller one is considered as part of the merged sequence, and the pointer for that array would be incremented by 1. This process continues until we have processed k elements. The kth element encountered in this process is the result.
C++
// C++ program to find K-th Element of Merged Two Sorted Arrays
// Using optimized merge step of merge sort
#include <bits/stdc++.h>
using namespace std;
int kthElement(vector<int> &a, vector<int> &b, int k) {
int n = a.size(), m = b.size();
// last element added to the merged sorted array
int last = 0;
int i = 0, j = 0;
for (int d = 0; d < k; ++d) {
if (i < n) {
// If a[i] > b[j] then increment j
if (j < m && a[i] > b[j]) {
last = b[j];
j++;
}
// Otherwise increment i
else {
last = a[i];
i++;
}
}
// If reached end of first array then increment j
else if (j < m) {
last = b[j];
j++;
}
}
// Return the last (kth) element
return last;
}
int main() {
vector<int> a = {2, 3, 6, 7, 9};
vector<int> b = {1, 4, 8, 10};
int k = 5;
cout << kthElement(a, b, k) << endl;
return 0;
}
Java
// Java program to find K-th Element of Merged Two Sorted Arrays
// Using optimized merge step of merge sort
class GfG {
static int kthElement(int[] a, int[] b, int k) {
int n = a.length, m = b.length;
// last element added to the merged sorted array
int last = 0;
int i = 0, j = 0;
for (int d = 0; d < k; ++d) {
if (i < n) {
// If a[i] > b[j] then increment j
if (j < m && a[i] > b[j]) {
last = b[j];
j++;
}
// otherwise increment i
else {
last = a[i];
i++;
}
}
// If reached end of first array then
// increment j
else if (j < m) {
last = b[j];
j++;
}
}
// return the last (kth) element
return last;
}
public static void main(String[] args) {
int[] a = {2, 3, 6, 7, 9};
int[] b = {1, 4, 8, 10};
int k = 5;
System.out.println(kthElement(a, b, k));
}
}
Python
# Python program to find K-th Element of Merged Two Sorted Arrays
# Using optimized merge step of merge sort
def kthElement(a, b, k):
n, m = len(a), len(b)
# last element added to the merged sorted array
last = 0
i, j = 0, 0
for _ in range(k):
if i < n:
# If a[i] > b[j] then increment j
if j < m and a[i] > b[j]:
last = b[j]
j += 1
# Otherwise increment i
else:
last = a[i]
i += 1
# If reached end of first array then increment j
elif j < m:
last = b[j]
j += 1
# Return the last (kth) element
return last
if __name__ == "__main__":
a = [2, 3, 6, 7, 9]
b = [1, 4, 8, 10]
k = 5
print(kthElement(a, b, k))
C#
// C# program to find K-th Element of Merged Two Sorted Arrays
// Using optimized merge step of merge sort
using System;
class GfG {
static int KthElement(int[] a, int[] b, int k) {
int n = a.Length, m = b.Length;
// last element added to the merged sorted array
int last = 0;
int i = 0, j = 0;
for (int d = 0; d < k; ++d) {
if (i < n) {
// If a[i] > b[j] then increment j
if (j < m && a[i] > b[j]) {
last = b[j];
j++;
}
// Otherwise increment i
else {
last = a[i];
i++;
}
}
// If reached end of first array then increment j
else if (j < m) {
last = b[j];
j++;
}
}
// Return the last (kth) element
return last;
}
public static void Main(string[] args) {
int[] a = { 2, 3, 6, 7, 9 };
int[] b = { 1, 4, 8, 10 };
int k = 5;
Console.WriteLine(KthElement(a, b, k));
}
}
JavaScript
// JavaScript program to find K-th Element of Merged Two Sorted Arrays
// Using optimized merge step of merge sort
function kthElement(a, b, k) {
const n = a.length, m = b.length;
// last element added to the merged sorted array
let last = 0;
let i = 0, j = 0;
for (let d = 0; d < k; ++d) {
if (i < n) {
// If a[i] > b[j] then increment j
if (j < m && a[i] > b[j]) {
last = b[j];
j++;
}
// Otherwise increment i
else {
last = a[i];
i++;
}
}
// If reached end of first array then increment j
else if (j < m) {
last = b[j];
j++;
}
}
// Return the last (kth) element
return last;
}
// Driver code
const a = [2, 3, 6, 7, 9];
const b = [1, 4, 8, 10];
const k = 5;
console.log(kthElement(a, b, k));
Using Binary Search - O(log(min(n, m)) Time and O(1) Space
The approach is similar to the Binary Search approach of Median of two sorted arrays of different sizes.
Consider the first array is smaller. If first array is greater, then swap the arrays to make sure that the first array is smaller.
- We mainly maintain two sets in this algorithm by doing binary search in the smaller array. Let mid1 be the partition of the smaller array. The first set contains elements from 0 to (mid1 – 1) from smaller array and mid2 = (k – mid1) elements from the greater array to make sure that the first set has exactly k elements. The second set contains remaining elements.
- Our target is to find a point in both arrays such that all elements in the first set are smaller than all elements in the other set (set that contains elements from right side). For this we validate the partitions using the same way as we did in Median of two sorted arrays of different sizes.
C++
// C++ program to find K-th Element of Merged Two Sorted Arrays
// using Binary Search
#include <bits/stdc++.h>
using namespace std;
int kthElement(vector<int> &a, vector<int> &b, int k) {
int n = a.size(), m = b.size();
// If a[] has more elements, then call kthElement
// with reversed parameters
if (n > m)
return kthElement(b, a, k);
// Binary Search on the number of elements we can
// include in the first set from a[]
int lo = max(0, k - m), hi = min(k, n);
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = k - mid1;
// Find elements to the left and right of partition in a[]
int l1 = (mid1 == 0 ? INT_MIN : a[mid1 - 1]);
int r1 = (mid1 == n ? INT_MAX : a[mid1]);
// Find elements to the left and right of partition in b[]
int l2 = (mid2 == 0 ? INT_MIN : b[mid2 - 1]);
int r2 = (mid2 == m ? INT_MAX : b[mid2]);
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// Find and return the maximum of l1 and l2
return max(l1, l2);
}
// Check if we need to take lesser elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
int main() {
vector<int> a = {2, 3, 6, 7, 9};
vector<int> b = {1, 4, 8, 10};
int k = 5;
cout << kthElement(a, b, k);
return 0;
}
Java
// Java program to find K-th Element of Merged Two Sorted Arrays
// using Binary Search
import java.util.*;
class GfG {
static int kthElement(int[] a, int[] b, int k) {
int n = a.length, m = b.length;
// If a[] has more elements, then call kthElement
// with reversed parameters
if (n > m)
return kthElement(b, a, k);
// Binary Search on the number of elements we can
// include in the first set from a[]
int lo = Math.max(0, k - m), hi = Math.min(k, n);
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = k - mid1;
// Find elements to the left and right of partition in a[]
int l1 = (mid1 == 0 ? Integer.MIN_VALUE :
a[mid1 - 1]);
int r1 = (mid1 == n ? Integer.MAX_VALUE :
a[mid1]);
// Find elements to the left and right of partition in a[]
int l2 = (mid2 == 0 ? Integer.MIN_VALUE :
b[mid2 - 1]);
int r2 = (mid2 == m ? Integer.MAX_VALUE :
b[mid2]);
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// Find and return the maximum of l1 and l2
return Math.max(l1, l2);
}
// Check if we need to take lesser elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
public static void main(String[] args) {
int[] a = {2, 3, 6, 7, 9};
int[] b = {1, 4, 8, 10};
int k = 5;
System.out.println(kthElement(a, b, k));
}
}
Python
# Python program to find K-th Element of Merged Two Sorted Arrays
# using Binary Search
def kthElement(a, b, k):
n = len(a)
m = len(b)
# If a[] has more elements, then call kthElement
# with reversed parameters
if n > m:
return kthElement(b, a, k)
# Binary Search on the number of elements we can
# include in the first set from a[]
lo = max(0, k - m)
hi = min(k, n)
while lo <= hi:
mid1 = (lo + hi) // 2
mid2 = k - mid1
# Find elements to the left and right of partition in a[]
l1 = (mid1 == 0 and float('-inf') or a[mid1 - 1])
r1 = (mid1 == n and float('inf') or a[mid1])
# Find elements to the left and right of partition in b[]
l2 = (mid2 == 0 and float('-inf') or b[mid2 - 1])
r2 = (mid2 == m and float('inf') or b[mid2])
# If it is a valid partition
if l1 <= r2 and l2 <= r1:
# Find and return the maximum of l1 and l2
return max(l1, l2)
# Check if we need to take lesser elements from a[]
if l1 > r2:
hi = mid1 - 1
# Check if we need to take more elements from a[]
else:
lo = mid1 + 1
return 0
if __name__ == "__main__":
a = [2, 3, 6, 7, 9]
b = [1, 4, 8, 10]
k = 5
print(kthElement(a, b, k))
C#
// C# program to find K-th Element of Merged Two Sorted Arrays
// using Binary Search
using System;
class GfG {
static int kthElement(int[] a, int[] b, int k) {
int n = a.Length, m = b.Length;
// If a[] has more elements, then call kthElement
// with reversed parameters
if (n > m)
return kthElement(b, a, k);
// Binary Search on the number of elements we can
// include in the first set from a[]
int lo = Math.Max(0, k - m), hi = Math.Min(k, n);
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = k - mid1;
// Find elements to the left and right of partition in a[]
int l1 = (mid1 == 0 ? Int32.MinValue : a[mid1 - 1]);
int r1 = (mid1 == n ? Int32.MaxValue : a[mid1]);
// Find elements to the left and right of partition in b[]
int l2 = (mid2 == 0 ? Int32.MinValue : b[mid2 - 1]);
int r2 = (mid2 == m ? Int32.MaxValue : b[mid2]);
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// Find and return the maximum of l1 and l2
return Math.Max(l1, l2);
}
// Check if we need to take lesser elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
static void Main() {
int[] a = { 2, 3, 6, 7, 9 };
int[] b = { 1, 4, 8, 10 };
int k = 5;
Console.WriteLine(kthElement(a, b, k));
}
}
JavaScript
// JavaScript program to find K-th Element of Merged Two Sorted Arrays
// using Binary Search
function kthElement(a, b, k) {
let n = a.length, m = b.length;
// If a[] has more elements, then call kthElement
// with reversed parameters
if (n > m) {
return kthElement(b, a, k);
}
// Binary Search on the number of elements we can
// include in the first set from a[]
let lo = Math.max(0, k - m), hi = Math.min(k, n);
while (lo <= hi) {
let mid1 = Math.floor((lo + hi) / 2);
let mid2 = k - mid1;
// Find elements to the left and right of partition in a[]
let l1 = (mid1 === 0 ? -Infinity : a[mid1 - 1]);
let r1 = (mid1 === n ? Infinity : a[mid1]);
// Find elements to the left and right of partition in b[]
let l2 = (mid2 === 0 ? -Infinity : b[mid2 - 1]);
let r2 = (mid2 === m ? Infinity : b[mid2]);
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// Find and return the maximum of l1 and l2
return Math.max(l1, l2);
}
// Check if we need to take lesser elements from a[]
if (l1 > r2) {
hi = mid1 - 1;
}
// Check if we need to take more elements from a[]
else {
lo = mid1 + 1;
}
}
return 0;
}
// Driver Code
const a = [2, 3, 6, 7, 9];
const b = [1, 4, 8, 10];
const k = 5;
console.log(kthElement(a, b, k));
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem