Open In App

Kth Missing Positive Number in a Sorted Array

Last Updated : 13 Aug, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a sorted array of distinct positive integers arr[] and an integer k, find the kth positive integer that is missing from the array.

Examples : 

Input: arr[] = [2, 3, 4, 7, 11], k = 5
Output: 9
Explanation: Missing are 1, 5, 6, 8, 9, 10, ... and 5th missing number is 9.

Input: arr[] = [1, 2, 3], k = 2
Output: 5
Explanation: Missing are 4, 5, 6.... and 2nd missing number is 5.

Input: arr[] = [3, 5, 9, 10, 11, 12], k = 2
Output: 2
Explanation: Missing are 1, 2, 4, 6, 7, 8, 13,... and 2nd missing number is 2.

[Naive Approach] Using Hash Set - O(n + k) Time and O(n) Space

The idea is to insert all elements of the array into a set for constant-time lookups. Then, we iterate starting from 1, checking whether each number is missing from the set. For every number not found, we increment a counter. Once we reach the k-th missing number, we return it as the result.

C++
#include <iostream>
#include <vector>
#include <unordered_set>
using namespace std;

int kthMissing(vector<int>& arr, int k) {
  
    // insert all array elements into a set
    unordered_set<int> s(arr.begin(), arr.end());
    
    // loop until we find the k-th missing number
    int count = 0, curr = 0;
    while (count < k) {
        curr++;
      
        // increment missing count if current
        // element is missing
        if (s.find(curr) == s.end()) {
            count++;
        }      
    }
    return curr;
}

int main() {
    vector<int> arr = {2, 3, 4, 7, 11};
    int k = 5;
    cout << kthMissing(arr, k);
    return 0;
}
Java
import java.util.HashSet;
import java.util.Set;

class GfG {

    static int kthMissing(int[] arr, int k) {
      
        // insert all array elements into a set
        Set<Integer> set = new HashSet<>();
        for (int num : arr) {
            set.add(num);
        }

        int count = 0, curr = 0;

        // loop until we find the k-th missing number
        while (count < k) {
            curr++;
            
            // increment missing count if current 
            // element is missing
            if (!set.contains(curr)) {
                count++;
            }
        }
        return curr;
    }

    public static void main(String[] args) {
        int[] arr = {2, 3, 4, 7, 11};
        int k = 5;
        System.out.println(kthMissing(arr, k));
    }
}
Python
def kthMissing(arr, k):
    # insert all array elements into a set
    s = set(arr)
    
    count = 0
    curr = 0

    # loop until we find the k-th missing number
    while count < k:
        curr += 1
        
        # increment missing count if current 
        # element is missing
        if curr not in s:
            count += 1
    
    return curr

if __name__ == "__main__":
    arr = [2, 3, 4, 7, 11]
    k = 5
    print(kthMissing(arr, k))
C#
using System;
using System.Collections.Generic;

class GfG {
  
      static int KthMissing(int[] arr, int k) {
      
        // insert all array elements into a HashSet
        HashSet<int> set = new HashSet<int>(arr);

        int count = 0, curr = 0;

        // loop until we find the k-th missing number
        while (count < k) {
            curr++;
          
            // increment missing count if current 
            // element is missing
            if (!set.Contains(curr))
                count++;
        }

        return curr;
    }

    static void Main() {
        int[] arr = { 2, 3, 4, 7, 11 };
        int k = 5;
        Console.WriteLine(KthMissing(arr, k));
    }
}
JavaScript
function kthMissing(arr, k) {

    // insert all array elements into a set
    let s = new Set(arr);
    
    let count = 0;
    let curr = 0;

    // loop until we find the k-th missing number
    while (count < k) {
        curr++;
        
        // increment missing count if current
        // element is missing
        if (!s.has(curr)) {
            count++;
        }
    }
    return curr;
}

// driver code
let arr = [2, 3, 4, 7, 11];
let k = 5;
console.log(kthMissing(arr, k));

Output
9

[Better Approach] Using Index Comparison - O(n) Time and O(1) Space

The idea is based on the observation that in a perfect sequence without missing numbers, the i-th element should be i + 1. If any number is missing, then arr[i] becomes greater than i + 1, and the number of missing elements before arr[i] is arr[i] - (i + 1).
So, at each index i, we check if the number of missing elements so far is at least k. The first index where arr[i] > k + i indicates that the k-th missing number is before that index and equals k + i.
If no such index is found, it means the k-th missing number lies beyond the last element and is simply k + n.

For example, for [1, 3, 5] and k = 2.

  • For i = 0, we have arr[i] less than 2 + i.
  • For i = 1, we have arr[i] equal to 2 + i.
  • For i = 2, we have arr[i] more than 2 + i. So we return 2 + i which is 4.
C++
#include <iostream>
#include <vector>
using namespace std;

int kthMissing(vector<int> &arr, int k) {
    int n = arr.size();
    for (int i = 0; i < n; i++) {
        if (arr[i] > (k + i))
            return (k + i);
    }

    // if all numbers from 1 to n are present 
    // in arr[], return k + n
    return k + n;
}

int main() {
    vector<int> arr = {2, 3, 4, 7, 11};
    int k = 5;
    cout << kthMissing(arr, k);
    return 0;
}
Java
class GfG {
    static int kthMissing(int[] arr, int k) {
      
        int n = arr.length;
        for (int i = 0; i < n; i++) {
            if (arr[i] > (k + i)) {
                return (k + i);
            }
        }
      
        // if all numbers from 1 to n are present 
        // in arr[], return k + n
        return k + n;
    }

    public static void main(String[] args) {
        int[] arr = {2, 3, 4, 7, 11};
        int k = 5;
        System.out.println(kthMissing(arr, k));
    }
}
Python
def kthMissing(arr, k):
    n = len(arr)
    for i in range(n):
        if arr[i] > (k + i):
            return k + i
          
    # if all numbers from 1 to n are present 
    # in arr[], return k + n
    return k + n

if __name__ == '__main__':
    arr = [2, 3, 4, 7, 11]
    k = 5
    print(kthMissing(arr, k))
C#
using System;
using System.Collections.Generic;

class GfG {
    static int KthMissing(int[] arr, int k) {
        int n = arr.Length;
        for (int i = 0; i < n; i++) {
            if (arr[i] > (k + i)) {
                return k + i;
            }
        }
        
        // if all numbers from 1 to n are present 
        // in arr[], return k + n
        return k + n;
    }

    static void Main() {
        int[] arr = {2, 3, 4, 7, 11};
        int k = 5;

        Console.WriteLine(KthMissing(arr, k));
    }
}
JavaScript
function kthMissing(arr, k) {
    let n = arr.length;
    for (let i = 0; i < n; i++) {
        if (arr[i] > (k + i)) {
            return k + i;
        }
    }
      
    // if all numbers from 1 to n are present 
    // in arr[], return k + n
    return k + n;
}

// Driver code
let arr = [2, 3, 4, 7, 11];
let k = 5;
console.log(kthMissing(arr, k));

Output
9

[Expected Approach] Using Binary Search - O(log n) Time and O(1) Space

In the previous approach, we used linear search to find the first index where arr[i] > (k + i). Since the input array is sorted, once we have found the index i such that arr[i] > (k + i), then for all indices j (j > i), arr[j] will also be greater than (k + j). So, we can optimize the previous approach using binary search to find the index i so that the k-th missing element is k + i.


C++
#include <iostream>
#include <vector>
using namespace std;

int kthMissing(vector<int> &arr, int k) {
    int lo = 0, hi = arr.size() - 1;
    int res = arr.size() + k;

    // binary Search for index where
    // arr[i] > (i + k)
    while (lo <= hi) {
        int mid = (lo + hi) / 2;
        if (arr[mid] > mid + k) {
            res = mid + k;
            hi = mid - 1;
        }
        else {
            lo = mid + 1;
        }
    }

    return res;
}

int main() {
    vector<int> arr = {2, 3, 4, 7, 11};
    int k = 5;
    cout << kthMissing(arr, k);
    return 0;
}
Java
class GfG {

    static int kthMissing(int[] arr, int k) {
        int lo = 0, hi = arr.length - 1;
        int res = arr.length + k;

        // binary Search for index where 
        // arr[i] > (i + k)
        while (lo <= hi) {
            int mid = (lo + hi) / 2;
            if (arr[mid] > mid + k) {
                res = mid + k;
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
        }

        return res;
    }

    public static void main(String[] args) {
        int[] arr = {2, 3, 4, 7, 11};
        int k = 5;
        System.out.println(kthMissing(arr, k));
    }
}
Python
def kthMissing(arr, k):
    lo = 0
    hi = len(arr) - 1
    res = len(arr) + k

    # binary Search for index where 
    # arr[i] > (i + k)
    while lo <= hi:
        mid = (lo + hi) // 2
        if arr[mid] > mid + k:
            res = mid + k
            hi = mid - 1
        else:
            lo = mid + 1

    return res

if __name__ == "__main__":
    arr = [2, 3, 4, 7, 11]
    k = 5
    print(kthMissing(arr, k))
C#
using System;

class GfG {
    static int kthMissing(int[] arr, int k) {
        int lo = 0, hi = arr.Length - 1;
        int res = arr.Length + k;

        // binary Search for index where 
        // arr[i] > (i + k)
        while (lo <= hi) {
            int mid = (lo + hi) / 2;
            if (arr[mid] > mid + k) {
                res = mid + k;
                hi = mid - 1;
            } 
            else {
                lo = mid + 1;
            }
        }

        return res;
    }

    static void Main() {
        int[] arr = { 2, 3, 4, 7, 11 };
        int k = 5;
        Console.WriteLine(kthMissing(arr, k));
    }
}
JavaScript
function kthMissing(arr, k) {
    let lo = 0, hi = arr.length - 1;
    let res = arr.length + k;

    // binary Search for index where 
    // arr[i] > (i + k)
    while (lo <= hi) {
        let mid = Math.floor((lo + hi) / 2);
        if (arr[mid] > mid + k) {
            res = mid + k;
            hi = mid - 1;
        } else {
            lo = mid + 1;
        }
    }

    return res;
}

// Driver Code
const arr = [2, 3, 4, 7, 11];
const k = 5;
console.log(kthMissing(arr, k));

Output
9

Kth Missing Positive Number
Visit Course explore course icon
Article Tags :
Practice Tags :

Similar Reads