Kth node in Diagonal Traversal of Binary Tree
Last Updated :
02 Nov, 2021
Given a binary tree and a value K. The task is to print the k-th node in the diagonal traversal of the binary tree. If no such node exists then print -1.
Examples:
Input :
8
/ \
3 10
/ / \
1 6 14
/ \ /
4 7 13
k = 5
Output : 6
Diagonal Traversal of the above tree is:
8 10 14
3 6 7 13
1 4
Input :
1
/ \
2 3
/ \
4 5
k = 7
Output : -1
Approach: The idea is to perform the diagonal traversal of the binary tree until K nodes are visited in the diagonal traversal. While traversing for each node visited decrement the value of variable K and return the current node when the value of K becomes zero. If the diagonal traversal does not contain at least K nodes, return -1.
Below is the implementation of the above approach:
C++
// C++ program to print kth node
// in the diagonal traversal of a binary tree
#include <bits/stdc++.h>
using namespace std;
// A binary tree node has data, pointer to left
// child and a pointer to right child
struct Node {
int data;
Node *left, *right;
};
// Helper function that allocates a new node
Node* newNode(int data)
{
Node* node = new Node();
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Iterative function to print kth node
// in diagonal traversal of binary tree
int diagonalPrint(Node* root, int k)
{
// Base cases
if (root == NULL || k == 0)
return -1;
int ans = -1;
queue<Node*> q;
// Push root node
q.push(root);
// Push delimiter NULL
q.push(NULL);
while (!q.empty()) {
Node* temp = q.front();
q.pop();
if (temp == NULL) {
if (q.empty()) {
// If kth node exists then return
// the answer
if (k == 0)
return ans;
// If kth node doesnt exists
// then break from the while loop
else
break;
}
q.push(NULL);
}
else {
while (temp) {
// If the required kth node
// has been found then return the answer
if (k == 0)
return ans;
k--;
// Update the value of variable ans
// each time
ans = temp->data;
if (temp->left)
q.push(temp->left);
temp = temp->right;
}
}
}
// If kth node doesnt exists then
// return -1
return -1;
}
// Driver Code
int main()
{
Node* root = newNode(8);
root->left = newNode(3);
root->right = newNode(10);
root->left->left = newNode(1);
root->left->right = newNode(6);
root->right->right = newNode(14);
root->right->right->left = newNode(13);
root->left->right->left = newNode(4);
root->left->right->right = newNode(7);
int k = 9;
cout << diagonalPrint(root, k);
return 0;
}
Java
// Java program to print kth node
// in the diagonal traversal of a binary tree
import java.util.*;
class GFG
{
// A binary tree node has data, pointer to left
//child and a pointer to right child
static class Node
{
int data;
Node left, right;
};
// Helper function that allocates a new node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null;
return (node);
}
// Iterative function to print kth node
// in diagonal traversal of binary tree
static int diagonalPrint(Node root, int k)
{
// Base cases
if (root == null || k == 0)
return -1;
int ans = -1;
Queue<Node> q = new LinkedList<Node>();
// add root node
q.add(root);
// add delimiter null
q.add(null);
while (q.size() > 0)
{
Node temp = q.peek();
q.remove();
if (temp == null)
{
if (q.size() == 0)
{
// If kth node exists then return
// the answer
if (k == 0)
return ans;
// If kth node doesnt exists
// then break from the while loop
else
break;
}
q.add(null);
}
else {
while (temp != null)
{
// If the required kth node
// has been found then return the answer
if (k == 0)
return ans;
k--;
// Update the value of variable ans
// each time
ans = temp.data;
if (temp.left!=null)
q.add(temp.left);
temp = temp.right;
}
}
}
// If kth node doesnt exists then
// return -1
return -1;
}
// Driver Code
public static void main(String args[])
{
Node root = newNode(8);
root.left = newNode(3);
root.right = newNode(10);
root.left.left = newNode(1);
root.left.right = newNode(6);
root.right.right = newNode(14);
root.right.right.left = newNode(13);
root.left.right.left = newNode(4);
root.left.right.right = newNode(7);
int k = 9;
System.out.println( diagonalPrint(root, k));
}
}
// This code is contributed by Arnab Kundu
Python3
# Python program to print kth node
# in the diagonal traversal of a binary tree
# Linked List node
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Helper function that allocates a new node
def newNode(data) :
node = Node(0)
node.data = data
node.left = node.right = None
return (node)
# Iterative function to print kth node
# in diagonal traversal of binary tree
def diagonalPrint( root, k) :
# Base cases
if (root == None or k == 0) :
return -1
ans = -1
q = []
# append root node
q.append(root)
# append delimiter None
q.append(None)
while (len(q) > 0):
temp = q[0]
q.pop(0)
if (temp == None):
if (len(q) == 0) :
# If kth node exists then return
# the answer
if (k == 0) :
return ans
# If kth node doesnt exists
# then break from the while loop
else:
break
q.append(None)
else :
while (temp != None):
# If the required kth node
# has been found then return the answer
if (k == 0) :
return ans
k = k - 1
# Update the value of variable ans
# each time
ans = temp.data
if (temp.left != None):
q.append(temp.left)
temp = temp.right
# If kth node doesnt exists then
# return -1
return -1
# Driver Code
root = newNode(8)
root.left = newNode(3)
root.right = newNode(10)
root.left.left = newNode(1)
root.left.right = newNode(6)
root.right.right = newNode(14)
root.right.right.left = newNode(13)
root.left.right.left = newNode(4)
root.left.right.right = newNode(7)
k = 9
print( diagonalPrint(root, k))
# This code is contributed by Arnab Kundu
C#
// C# program to print kth node
// in the diagonal traversal of a binary tree
using System;
using System.Collections.Generic;
class GFG
{
// A binary tree node has data, pointer to left
//child and a pointer to right child
public class Node
{
public int data;
public Node left, right;
};
// Helper function that allocates a new node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null;
return (node);
}
// Iterative function to print kth node
// in diagonal traversal of binary tree
static int diagonalPrint(Node root, int k)
{
// Base cases
if (root == null || k == 0)
return -1;
int ans = -1;
Queue<Node> q = new Queue<Node>();
// Enqueue root node
q.Enqueue(root);
// Enqueue delimiter null
q.Enqueue(null);
while (q.Count > 0)
{
Node temp = q.Peek();
q.Dequeue();
if (temp == null)
{
if (q.Count == 0)
{
// If kth node exists then return
// the answer
if (k == 0)
return ans;
// If kth node doesnt exists
// then break from the while loop
else
break;
}
q.Enqueue(null);
}
else
{
while (temp != null)
{
// If the required kth node
// has been found then return the answer
if (k == 0)
return ans;
k--;
// Update the value of variable ans
// each time
ans = temp.data;
if (temp.left!=null)
q.Enqueue(temp.left);
temp = temp.right;
}
}
}
// If kth node doesnt exists then
// return -1
return -1;
}
// Driver Code
public static void Main(String []args)
{
Node root = newNode(8);
root.left = newNode(3);
root.right = newNode(10);
root.left.left = newNode(1);
root.left.right = newNode(6);
root.right.right = newNode(14);
root.right.right.left = newNode(13);
root.left.right.left = newNode(4);
root.left.right.right = newNode(7);
int k = 9;
Console.WriteLine( diagonalPrint(root, k));
}
}
/* This code is contributed by PrinciRaj1992 */
JavaScript
<script>
// JavaScript program to print kth node
// in the diagonal traversal of a binary tree
// A binary tree node has data, pointer to left
//child and a pointer to right child
class Node
{
constructor()
{
this.data = 0;
this.left = null;
this.right = null;
}
};
// Helper function that allocates a new node
function newNode(data)
{
var node = new Node();
node.data = data;
node.left = node.right = null;
return (node);
}
// Iterative function to print kth node
// in diagonal traversal of binary tree
function diagonalPrint(root, k)
{
// Base cases
if (root == null || k == 0)
return -1;
var ans = -1;
var q = [];
// push root node
q.push(root);
// push delimiter null
q.push(null);
while (q.length > 0)
{
var temp = q[0];
q.shift();
if (temp == null)
{
if (q.length == 0)
{
// If kth node exists then return
// the answer
if (k == 0)
return ans;
// If kth node doesnt exists
// then break from the while loop
else
break;
}
q.push(null);
}
else
{
while (temp != null)
{
// If the required kth node
// has been found then return the answer
if (k == 0)
return ans;
k--;
// Update the value of variable ans
// each time
ans = temp.data;
if (temp.left!=null)
q.push(temp.left);
temp = temp.right;
}
}
}
// If kth node doesnt exists then
// return -1
return -1;
}
// Driver Code
var root = newNode(8);
root.left = newNode(3);
root.right = newNode(10);
root.left.left = newNode(1);
root.left.right = newNode(6);
root.right.right = newNode(14);
root.right.right.left = newNode(13);
root.left.right.left = newNode(4);
root.left.right.right = newNode(7);
var k = 9;
document.write( diagonalPrint(root, k));
</script>
Time Complexity: O(N), where N is the total number of nodes in the binary tree.
Auxiliary Space: O(N)
Similar Reads
Diagonal Traversal of Binary Tree Given a Binary Tree, the task is to print the diagonal traversal of the binary tree.Note: If the diagonal element are present in two different subtrees, then left subtree diagonal element should be taken first and then right subtree. Example:Input: Output: 8 10 14 3 6 7 13 1 4Explanation: The above
7 min read
Iterative diagonal traversal of binary tree Given a Binary Tree, the task is to print the diagonal traversal of the binary tree.Note: If the diagonal element are present in two different subtrees, then left subtree diagonal element should be taken first and then right subtree. Example:Input: Output: 8 10 14 3 6 7 13 1 4Explanation: The above
13 min read
Inorder Traversal of Binary Tree Inorder traversal is a depth-first traversal method that follows this sequence:Left subtree is visited first.Root node is processed next.Right subtree is visited last.How does Inorder Traversal work?Key Properties:If applied to a Binary Search Tree (BST), it returns elements in sorted order.Ensures
5 min read
Find the kth node in vertical order traversal of a Binary Tree Given a binary tree and an integer k, the task is to return the kth node in the vertical order traversal of a binary tree. If no such node exists then return -1.The vertical order traversal of a binary tree means to print it vertically.Examples: Input: k = 3Output: 1Explanation: The below image show
9 min read
Middle To Up-Down Order traversal of a Binary Tree Given a binary tree, the task is to traverse this binary tree from the middle to the up-down order. In Middle to up-down order traversal, the following steps are performed: First, print the middle level of the tree.Then, print the elements at one level above the middle level of the tree.Then, print
15+ min read