Leftmost and rightmost indices of the maximum and the minimum element of an array
Last Updated :
11 Jul, 2025
Given an array arr[], the task is to find the leftmost and the rightmost indices of the minimum and the maximum element from the array where arr[] consists of non-distinct elements.
Examples:
Input: arr[] = {2, 1, 1, 2, 1, 5, 6, 5}
Output: Minimum left : 1
Minimum right : 4
Maximum left : 6
Maximum right : 6
Minimum element is 1 which is present at indices 1, 2 and 4.
Maximum element is 6 which is present only at index 6.
Input: arr[] = {0, 1, 0, 2, 7, 5, 6, 7}
Output: Minimum left : 0
Minimum right : 2
Maximum left : 4
Maximum right : 7
Method 1: When the array is unsorted.
- Initialize the variable leftMin = rightMin = leftMax = rightMax = arr[0] and min = max = arr[0].
- Start traversing the array from 1 to n - 1.
- If arr[i] < min then a new minimum is found. Update leftMin = rightMin = i.
- Else arr[i] = min then another copy of the current minimum is found. Update the rightMin = i.
- If arr[i] > max then a new maximum is found. Update leftMax = rightMax = i.
- Else arr[i] = max then another copy of the current maximum is found. Update the rightMax = i.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
void findIndices(int arr[], int n)
{
int leftMin = 0, rightMin = 0;
int leftMax = 0, rightMax = 0;
int min = arr[0], max = arr[0];
for (int i = 1; i < n; i++) {
// If found new minimum
if (arr[i] < min) {
leftMin = rightMin = i;
min = arr[i];
}
// If arr[i] = min then rightmost index
// for min will change
else if (arr[i] == min)
rightMin = i;
// If found new maximum
if (arr[i] > max) {
leftMax = rightMax = i;
max = arr[i];
}
// If arr[i] = max then rightmost index
// for max will change
else if (arr[i] == max)
rightMax = i;
}
cout << "Minimum left : " << leftMin << "\n";
cout << "Minimum right : " << rightMin <<"\n";
cout << "Maximum left : " << leftMax <<"\n";
cout << "Maximum right : " << rightMax <<"\n";
}
// Driver code
int main()
{
int arr[] = { 2, 1, 1, 2, 1, 5, 6, 5 };
int n = sizeof(arr)/sizeof(arr[0]);
findIndices(arr, n);
}
// This code is contributed
// by ihritik
Java
// Java implementation of the approach
public class GFG {
public static void findIndices(int arr[], int n)
{
int leftMin = 0, rightMin = 0;
int leftMax = 0, rightMax = 0;
int min = arr[0], max = arr[0];
for (int i = 1; i < n; i++) {
// If found new minimum
if (arr[i] < min) {
leftMin = rightMin = i;
min = arr[i];
}
// If arr[i] = min then rightmost index
// for min will change
else if (arr[i] == min)
rightMin = i;
// If found new maximum
if (arr[i] > max) {
leftMax = rightMax = i;
max = arr[i];
}
// If arr[i] = max then rightmost index
// for max will change
else if (arr[i] == max)
rightMax = i;
}
System.out.println("Minimum left : " + leftMin);
System.out.println("Minimum right : " + rightMin);
System.out.println("Maximum left : " + leftMax);
System.out.println("Maximum right : " + rightMax);
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 2, 1, 1, 2, 1, 5, 6, 5 };
int n = arr.length;
findIndices(arr, n);
}
}
Python3
# Python3 implementation of the approach
def findIndices(arr, n) :
leftMin, rightMin = 0, 0
leftMax, rightMax = 0, 0
min_element = arr[0]
max_element = arr[0]
for i in range(n) :
# If found new minimum
if (arr[i] < min_element) :
leftMin = rightMin = i
min_element = arr[i]
# If arr[i] = min then rightmost
# index for min will change
elif (arr[i] == min_element) :
rightMin = i
# If found new maximum
if (arr[i] > max_element) :
leftMax = rightMax = i
max_element = arr[i]
# If arr[i] = max then rightmost
# index for max will change
elif (arr[i] == max_element) :
rightMax = i
print("Minimum left : ", leftMin)
print("Minimum right : ", rightMin)
print("Maximum left : ", leftMax )
print("Maximum right : ", rightMax)
# Driver code
if __name__ == "__main__" :
arr = [ 2, 1, 1, 2, 1, 5, 6, 5 ]
n = len(arr)
findIndices(arr, n)
# This code is contributed by Ryuga
C#
// C# implementation of the approach
using System;
class GFG {
static void findIndices(int []arr, int n)
{
int leftMin = 0, rightMin = 0;
int leftMax = 0, rightMax = 0;
int min = arr[0], max = arr[0];
for (int i = 1; i < n; i++) {
// If found new minimum
if (arr[i] < min) {
leftMin = rightMin = i;
min = arr[i];
}
// If arr[i] = min then rightmost index
// for min will change
else if (arr[i] == min)
rightMin = i;
// If found new maximum
if (arr[i] > max) {
leftMax = rightMax = i;
max = arr[i];
}
// If arr[i] = max then rightmost index
// for max will change
else if (arr[i] == max)
rightMax = i;
}
Console.WriteLine("Minimum left : " + leftMin);
Console.WriteLine("Minimum right : " + rightMin);
Console.WriteLine("Maximum left : " + leftMax);
Console.WriteLine("Maximum right : " + rightMax);
}
// Driver code
public static void Main()
{
int []arr = { 2, 1, 1, 2, 1, 5, 6, 5 };
int n = arr.Length;
findIndices(arr, n);
}
}
// This code is contributed
// By ihritik
PHP
<?php
// PHP implementation of the approach
function findIndices($arr, $n)
{
$leftMin = 0;
$rightMin = 0;
$leftMax = 0;
$rightMax = 0;
$min = $arr[0];
$max = $arr[0];
for ($i = 1; $i < $n; $i++)
{
// If found new minimum
if ($arr[$i] < $min)
{
$leftMin = $rightMin = $i;
$min = $arr[$i];
}
// If arr[i] = min then rightmost
// index for min will change
else if ($arr[$i] == $min)
$rightMin = $i;
// If found new maximum
if ($arr[$i] > $max)
{
$leftMax = $rightMax = $i;
$max = $arr[$i];
}
// If arr[i] = max then rightmost
// index for max will change
else if ($arr[$i] == $max)
$rightMax = $i;
}
echo "Minimum left : ", $leftMin, "\n";
echo "Minimum right : ", $rightMin,"\n";
echo "Maximum left : ", $leftMax, "\n";
echo "Maximum right : ", $rightMax, "\n";
}
// Driver code
$arr = array( 2, 1, 1, 2, 1, 5, 6, 5 );
$n = sizeof($arr);
findIndices($arr, $n);
// This code is contributed
// by Sachin
?>
JavaScript
<script>
// Javascript implementation of the approach
function findIndices(arr,n)
{
let leftMin = 0, rightMin = 0;
let leftMax = 0, rightMax = 0;
let min = arr[0], max = arr[0];
for (let i = 1; i < n; i++) {
// If found new minimum
if (arr[i] < min) {
leftMin = rightMin = i;
min = arr[i];
}
// If arr[i] = min then rightmost index
// for min will change
else if (arr[i] == min)
rightMin = i;
// If found new maximum
if (arr[i] > max) {
leftMax = rightMax = i;
max = arr[i];
}
// If arr[i] = max then rightmost index
// for max will change
else if (arr[i] == max)
rightMax = i;
}
document.write("Minimum left : " + leftMin+"<br>");
document.write("Minimum right : " + rightMin+"<br>");
document.write("Maximum left : " + leftMax+"<br>");
document.write("Maximum right : " + rightMax+"<br>");
}
// Driver code
let arr=[2, 1, 1, 2, 1, 5, 6, 5 ];
let n = arr.length;
findIndices(arr, n);
// This code is contributed by unknown2108
</script>
Output: Minimum left : 1
Minimum right : 4
Maximum left : 6
Maximum right : 6
Time Complexity: O(n)
Auxiliary Space: O(1)
Method 2: When the array is sorted.
- When the array is sorted then leftMin = 0 and rightMax = n - 1.
- In order to find the rightMin, apply a modified binary search:
- Set i = 1.
- While arr[i] = min update rightMin = i and i = i * 2.
- Finally do a linear search for the rest of the elements from rightMin + 1 to n - 1 while arr[i] = min.
- Return rightMin in the end.
- Similarly, for leftMax repeat the above steps but in reverse i.e. from n - 1 and update i = i / 2 after every iteration.
Below is the implementation of the above approach:
C++
// C++ implementation of above idea
#include<bits/stdc++.h>
using namespace std;
// Function to return the index of the rightmost
// minimum element from the array
int getRightMin(int arr[], int n)
{
// First element is the minimum in a sorted array
int min = arr[0];
int rightMin = 0;
int i = 1;
while (i < n) {
// While the elements are equal to the minimum
// update rightMin
if (arr[i] == min)
rightMin = i;
i *= 2;
}
i = rightMin + 1;
// Final check whether there are any elements
// which are equal to the minimum
while (i < n && arr[i] == min) {
rightMin = i;
i++;
}
return rightMin;
}
// Function to return the index of the leftmost
// maximum element from the array
int getLeftMax(int arr[], int n)
{
// Last element is the maximum in a sorted array
int max = arr[n - 1];
int leftMax = n - 1;
int i = n - 2;
while (i > 0) {
// While the elements are equal to the maximum
// update leftMax
if (arr[i] == max)
leftMax = i;
i /= 2;
}
i = leftMax - 1;
// Final check whether there are any elements
// which are equal to the maximum
while (i >= 0 && arr[i] == max) {
leftMax = i;
i--;
}
return leftMax;
}
// Driver code
int main()
{
int arr[] = { 0, 0, 1, 2, 5, 5, 6, 8, 8 };
int n = sizeof(arr)/sizeof(arr[0]);
// First element is the leftmost minimum in a sorted array
cout << "Minimum left : " << 0 <<"\n";
cout << "Minimum right : " << getRightMin(arr, n) << "\n";
cout << "Maximum left : " << getLeftMax(arr, n) <<"\n";
// Last element is the rightmost maximum in a sorted array
cout << "Maximum right : " << (n - 1);
}
// This code is contributed by ihritik
Java
// Java implementation of above idea
public class GFG {
// Function to return the index of the rightmost
// minimum element from the array
public static int getRightMin(int arr[], int n)
{
// First element is the minimum in a sorted array
int min = arr[0];
int rightMin = 0;
int i = 1;
while (i < n) {
// While the elements are equal to the minimum
// update rightMin
if (arr[i] == min)
rightMin = i;
i *= 2;
}
i = rightMin + 1;
// Final check whether there are any elements
// which are equal to the minimum
while (i < n && arr[i] == min) {
rightMin = i;
i++;
}
return rightMin;
}
// Function to return the index of the leftmost
// maximum element from the array
public static int getLeftMax(int arr[], int n)
{
// Last element is the maximum in a sorted array
int max = arr[n - 1];
int leftMax = n - 1;
int i = n - 2;
while (i > 0) {
// While the elements are equal to the maximum
// update leftMax
if (arr[i] == max)
leftMax = i;
i /= 2;
}
i = leftMax - 1;
// Final check whether there are any elements
// which are equal to the maximum
while (i >= 0 && arr[i] == max) {
leftMax = i;
i--;
}
return leftMax;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 0, 0, 1, 2, 5, 5, 6, 8, 8 };
int n = arr.length;
// First element is the leftmost minimum in a sorted array
System.out.println("Minimum left : " + 0);
System.out.println("Minimum right : " + getRightMin(arr, n));
System.out.println("Maximum left : " + getLeftMax(arr, n));
// Last element is the rightmost maximum in a sorted array
System.out.println("Maximum right : " + (n - 1));
}
}
Python3
# Python 3 implementation of above idea
# Function to return the index of the
# rightmost minimum element from the array
def getRightMin(arr, n):
# First element is the minimum
# in a sorted array
min = arr[0]
rightMin = 0
i = 1
while (i < n):
# While the elements are equal to
# the minimum update rightMin
if (arr[i] == min):
rightMin = i
i *= 2
i = rightMin + 1
# Final check whether there are any
# elements which are equal to the minimum
while (i < n and arr[i] == min):
rightMin = i
i += 1
return rightMin
# Function to return the index of the
# leftmost maximum element from the array
def getLeftMax(arr, n):
# Last element is the maximum
# in a sorted array
max = arr[n - 1]
leftMax = n - 1
i = n - 2
while (i > 0):
# While the elements are equal to
# the maximum update leftMax
if (arr[i] == max):
leftMax = i
i = int(i / 2)
i = leftMax - 1
# Final check whether there are any
# elements which are equal to the maximum
while (i >= 0 and arr[i] == max):
leftMax = i
i -= 1
return leftMax
# Driver code
if __name__ == '__main__':
arr = [0, 0, 1, 2, 5, 5, 6, 8, 8]
n = len(arr)
# First element is the leftmost
# minimum in a sorted array
print("Minimum left :", 0)
print("Minimum right :", getRightMin(arr, n))
print("Maximum left :", getLeftMax(arr, n))
# Last element is the rightmost maximum
# in a sorted array
print("Maximum right :", (n - 1))
# This code is contributed by
# Surendra_Gangwar
C#
// C# implementation of above idea
using System;
public class GFG {
// Function to return the index of the rightmost
// minimum element from the array
public static int getRightMin(int []arr, int n)
{
// First element is the minimum in a sorted array
int min = arr[0];
int rightMin = 0;
int i = 1;
while (i < n) {
// While the elements are equal to the minimum
// update rightMin
if (arr[i] == min)
rightMin = i;
i *= 2;
}
i = rightMin + 1;
// Final check whether there are any elements
// which are equal to the minimum
while (i < n && arr[i] == min) {
rightMin = i;
i++;
}
return rightMin;
}
// Function to return the index of the leftmost
// maximum element from the array
public static int getLeftMax(int []arr, int n)
{
// Last element is the maximum in a sorted array
int max = arr[n - 1];
int leftMax = n - 1;
int i = n - 2;
while (i > 0) {
// While the elements are equal to the maximum
// update leftMax
if (arr[i] == max)
leftMax = i;
i /= 2;
}
i = leftMax - 1;
// Final check whether there are any elements
// which are equal to the maximum
while (i >= 0 && arr[i] == max) {
leftMax = i;
i--;
}
return leftMax;
}
// Driver code
public static void Main()
{
int []arr = { 0, 0, 1, 2, 5, 5, 6, 8, 8 };
int n = arr.Length;
// First element is the leftmost minimum in a sorted array
Console.WriteLine("Minimum left : " + 0);
Console.WriteLine("Minimum right : " + getRightMin(arr, n));
Console.WriteLine("Maximum left : " + getLeftMax(arr, n));
// Last element is the rightmost maximum in a sorted array
Console.WriteLine("Maximum right : " + (n - 1));
}
}
// This code is contributed by ihritik
PHP
<?php
// PHP implementation of above idea
// Function to return the index of the
// rightmost minimum element from the array
function getRightMin($arr, $n)
{
// First element is the minimum
// in a sorted array
$min = $arr[0];
$rightMin = 0;
$i = 1;
while ($i < $n)
{
// While the elements are equal to
// the minimum update rightMin
if ($arr[$i] == $min)
$rightMin = $i;
$i *= 2;
}
$i = $rightMin + 1;
// Final check whether there are any
// elements which are equal to the minimum
while ($i < $n && $arr[$i] == $min)
{
$rightMin = $i;
$i++;
}
return $rightMin;
}
// Function to return the index of the
// leftmost maximum element from the array
function getLeftMax($arr, $n)
{
// Last element is the maximum in
// a sorted array
$max = $arr[$n - 1];
$leftMax = $n - 1;
$i = $n - 2;
while ($i > 0)
{
// While the elements are equal to
// the maximum update leftMax
if ($arr[$i] == $max)
$leftMax = $i;
$i /= 2;
}
$i = $leftMax - 1;
// Final check whether there are any
// elements which are equal to the maximum
while ($i >= 0 && $arr[$i] == $max)
{
$leftMax = $i;
$i--;
}
return $leftMax;
}
// Driver code
$arr = array(0, 0, 1, 2, 5,
5, 6, 8, 8 );
$n = sizeof($arr);
// First element is the leftmost
// minimum in a sorted array
echo "Minimum left : ", 0, "\n";
echo "Minimum right : ",
getRightMin($arr, $n), "\n";
echo "Maximum left : ",
getLeftMax($arr, $n), "\n";
// Last element is the rightmost
// maximum in a sorted array
echo "Maximum right : ", ($n - 1), "\n";
// This code is Contributed
// by Mukul singh
?>
JavaScript
<script>
// Javascript implementation of above idea
// Function to return the index of the rightmost
// minimum element from the array
function getRightMin(arr, n)
{
// First element is the minimum in a sorted array
let min = arr[0];
let rightMin = 0;
let i = 1;
while (i < n) {
// While the elements are equal to the minimum
// update rightMin
if (arr[i] == min)
rightMin = i;
i *= 2;
}
i = rightMin + 1;
// Final check whether there are any elements
// which are equal to the minimum
while (i < n && arr[i] == min) {
rightMin = i;
i++;
}
return rightMin;
}
// Function to return the index of the leftmost
// maximum element from the array
function getLeftMax(arr, n)
{
// Last element is the maximum in a sorted array
let max = arr[n - 1];
let leftMax = n - 1;
let i = n - 2;
while (i > 0) {
// While the elements are equal to the maximum
// update leftMax
if (arr[i] == max)
leftMax = i;
i = parseInt(i / 2, 10);
}
i = leftMax - 1;
// Final check whether there are any elements
// which are equal to the maximum
while (i >= 0 && arr[i] == max) {
leftMax = i;
i--;
}
return leftMax;
}
let arr = [ 0, 0, 1, 2, 5, 5, 6, 8, 8 ];
let n = arr.length;
// First element is the leftmost minimum in a sorted array
document.write("Minimum left : " + 0 + "</br>");
document.write("Minimum right : " + getRightMin(arr, n) + "</br>");
document.write("Maximum left : " + getLeftMax(arr, n) + "</br>");
// Last element is the rightmost maximum in a sorted array
document.write("Maximum right : " + (n - 1));
// This code is contributed by suresh07.
</script>
Output: Minimum left : 0
Minimum right : 1
Maximum left : 7
Maximum right : 8
Time Complexity: O(n) As linear search is applied for a set of elements so the worst case time complexity will be O(n).
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem