Open In App

Length of the longest ZigZag subarray of the given array

Last Updated : 12 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] containing n numbers, the task is to find the length of the longest ZigZag subarray such that every element in the subarray should be in form 

a < b > c < d > e < f

Examples: 

Input: arr[] = {12, 13, 1, 5, 4, 7, 8, 10, 10, 11} 
Output:
Explanation: 
The subarray is {12, 13, 1, 5, 4, 7} whose length is 6 and is in zigzag fashion.

Input: arr[] = {1, 2, 3, 4, 5} 
Output:
Explanation: 
The subarray is {1, 2} or {2, 3} or {4, 5} whose length is 2. 
 

Approach: To solve the problem mentioned above following steps are followed: 

  • Initially initialize cnt, a counter as 1.
  • Iterate among the array elements, check if elements are in form
a < b > c < d > e < f
  • If true Increase the cnt by 1. If it is not in form
a < b > c < d > e < f
  • then re-initialize cnt by 1.

Below is the implementation of the above approach:  

C++
// C++ implementation to find
// the length of longest zigzag
// subarray of the given array

#include <bits/stdc++.h>
using namespace std;

// Function to find the length of
// longest zigZag contiguous subarray
int lenOfLongZigZagArr(int a[], int n)
{

    // 'max' to store the length
    // of longest zigZag subarray
    int max = 1,

        // 'len' to store the lengths
        // of longest zigZag subarray
        // at different instants of time
        len = 1;

    // Traverse the array from the beginning
    for (int i = 0; i < n - 1; i++) {

        if (i % 2 == 0
            && (a[i] < a[i + 1]))
            len++;

        else if (i % 2 == 1
                 && (a[i] > a[i + 1]))
            len++;

        else {
            // Check if 'max' length
            // is less than the length
            // of the current zigzag subarray.
            // If true, then update 'max'
            if (max < len)
                max = len;

            // Reset 'len' to 1
            // as from this element,
            // again the length of the
            // new zigzag subarray
            // is being calculated
            len = 1;
        }
    }

    // comparing the length of the last
    // zigzag subarray with 'max'
    if (max < len)
        max = len;

    // Return required maximum length
    return max;
}

// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);

    cout << lenOfLongZigZagArr(arr, n);

    return 0;
}
Java
// Java implementation to find 
// the length of longest zigzag 
// subarray of the given array 
import java.io.*; 
import java.util.*; 
class GFG { 
    
// Function to find the length of 
// longest zigZag contiguous subarray 
static int lenOfLongZigZagArr(int a[], int n) 
{
    // 'max' to store the length 
    // of longest zigZag subarray 
    int max = 1, 

    // 'len' to store the lengths 
    // of longest zigZag subarray 
    // at different instants of time 
    len = 1; 

    // Traverse the array from the beginning 
    for (int i = 0; i < n - 1; i++) 
    { 
        if (i % 2 == 0 && (a[i] < a[i + 1])) 
            len++; 
    
        else if (i % 2 == 1 && (a[i] > a[i + 1])) 
            len++; 
    
        else 
        { 
            // Check if 'max' length 
            // is less than the length 
            // of the current zigzag subarray. 
            // If true, then update 'max' 
            if (max < len) 
                max = len; 
    
            // Reset 'len' to 1 
            // as from this element, 
            // again the length of the 
            // new zigzag subarray 
            // is being calculated 
            len = 1; 
        } 
    } 

    // comparing the length of the last 
    // zigzag subarray with 'max' 
    if (max < len) 
        max = len; 
    
    // Return required maximum length 
    return max; 
}

// Driver Code
public static void main(String[] args) 
{ 
    int arr[] = { 1, 2, 3, 4, 5 }; 
    int n = arr.length; 

    System.out.println(lenOfLongZigZagArr(arr, n));
} 
}

// This code is contributed by coder001
Python3
# Python3 implementation to find the 
# length of longest zigzag subarray 
# of the given array 

# Function to find the length of 
# longest zigZag contiguous subarray 
def lenOfLongZigZagArr(a, n): 

    # '_max' to store the length 
    # of longest zigZag subarray 
    _max = 1

    # '_len' to store the lengths 
    # of longest zigZag subarray 
    # at different instants of time 
    _len = 1

    # Traverse the array from the beginning 
    for i in range(n - 1): 

        if i % 2 == 0 and a[i] < a[i + 1]: 
            _len += 1

        elif i % 2 == 1 and a[i] > a[i + 1]: 
            _len += 1

        else: 
            
            # Check if '_max' length is less than 
            # the length of the current zigzag 
            # subarray. If true, then update '_max' 
            if _max < _len: 
                _max = _len 
                
            # Reset '_len' to 1 as from this element,
            # again the length of the new zigzag 
            # subarray is being calculated 
            _len = 1
    
    # Comparing the length of the last 
    # zigzag subarray with '_max' 
    if _max < _len: 
        _max = _len
        
    # Return required maximum length 
    return _max

# Driver code 
arr = [ 1, 2, 3, 4, 5 ]
n = len(arr) 

print(lenOfLongZigZagArr(arr, n))
    
# This code is contributed by divyamohan123
C#
// C# implementation to find 
// the length of longest zigzag 
// subarray of the given array 
using System;

class GFG{ 
    
// Function to find the length of 
// longest zigZag contiguous subarray 
static int lenOflongZigZagArr(int []a, int n) 
{
    
    // 'max' to store the length 
    // of longest zigZag subarray 
    int max = 1, 

    // 'len' to store the lengths 
    // of longest zigZag subarray 
    // at different instants of time 
    len = 1; 

    // Traverse the array from the beginning 
    for(int i = 0; i < n - 1; i++) 
    { 
       if (i % 2 == 0 && (a[i] < a[i + 1])) 
           len++;
           
       else if (i % 2 == 1 && (a[i] > a[i + 1])) 
           len++; 
           
       else
       { 

           // Check if 'max' length 
           // is less than the length 
           // of the current zigzag subarray. 
           // If true, then update 'max' 
           if (max < len) 
               max = len; 
           
           // Reset 'len' to 1 
           // as from this element, 
           // again the length of the 
           // new zigzag subarray 
           // is being calculated 
           len = 1; 
       } 
    } 

    // Comparing the length of the last 
    // zigzag subarray with 'max' 
    if (max < len) 
        max = len; 
    
    // Return required maximum length 
    return max; 
}

// Driver Code
public static void Main(String[] args) 
{ 
    int []arr = { 1, 2, 3, 4, 5 }; 
    int n = arr.Length; 

    Console.WriteLine(lenOflongZigZagArr(arr, n));
} 
}

// This code is contributed by 29AjayKumar
JavaScript
<script>

// Javascript implementation to find
// the length of longest zigzag
// subarray of the given array

// Function to find the length of
// longest zigZag contiguous subarray
function lenOfLongZigZagArr( a, n)
{

    // 'max' to store the length
    // of longest zigZag subarray
    var max = 1,

    // 'len' to store the lengths
    // of longest zigZag subarray
    // at different instants of time
    len = 1;

    // Traverse the array from the beginning
    for (var i = 0; i < n - 1; i++) {

        if (i % 2 == 0
            && (a[i] < a[i + 1]))
            len++;

        else if (i % 2 == 1
                 && (a[i] > a[i + 1]))
            len++;

        else {
            // Check if 'max' length
            // is less than the length
            // of the current zigzag subarray.
            // If true, then update 'max'
            if (max < len)
                max = len;

            // Reset 'len' to 1
            // as from this element,
            // again the length of the
            // new zigzag subarray
            // is being calculated
            len = 1;
        }
    }

    // comparing the length of the last
    // zigzag subarray with 'max'
    if (max < len)
        max = len;

    // Return required maximum length
    return max;
}

// Driver code
var arr = [ 1, 2, 3, 4, 5 ];
var n = arr.length;
document.write( lenOfLongZigZagArr(arr, n));

</script>

Output: 
2

 

Complexity Analysis :

Time Complexity - O(n), where n is the length of the array.

Auxiliary Space - O(1), no extra space required.


Similar Reads