Linked complete binary tree & its creation
Last Updated :
09 Mar, 2023
A complete binary tree is a binary tree where each level 'l' except the last has 2^l nodes and the nodes at the last level are all left-aligned. Complete binary trees are mainly used in heap-based data structures.
The nodes in the complete binary tree are inserted from left to right in one level at a time. If a level is full, the node is inserted in a new level.
Below are some complete binary trees.
1
/ \
2 3
1
/ \
2 3
/ \ /
4 5 6
Below binary trees are not complete:
1
/ \
2 3
/ /
4 5
1
/ \
2 3
/ \ /
4 5 6
/
7
Complete binary trees are generally represented using arrays. The array representation is better because it doesn't contain any empty slots. Given parent index i, its left child is given by 2 * i + 1, and its right child is given by 2 * i + 2. So no extra space is wasted and space to store left and right pointers is saved. However, it may be an interesting programming question to create a Complete Binary Tree using linked representation. Here Linked means a non-array representation where the left and right pointers(or references) are used to refer left and right children respectively. How to write an insert function that always adds a new node in the last level and at the leftmost available position?
To create a linked complete binary tree, we need to keep track of the nodes in a level order fashion such that the next node to be inserted lies in the leftmost position. A queue data structure can be used to keep track of the inserted nodes.
The following are steps to insert a new node in Complete Binary Tree.
- If the tree is empty, initialize the root with a new node.
- Else, get the front node of the queue.
- .......If the left child of this front node doesn't exist, set the left child as the new node.
- .......else if the right child of this front node doesn't exist, set the right child as the new node.
- If the front node has both the left child and right child, Dequeue() it.
- Enqueue() the new node.
Below is the implementation:
C++
// Program for linked implementation of complete binary tree
#include <bits/stdc++.h>
using namespace std;
// For Queue Size
#define SIZE 50
// A tree node
class node
{
public:
int data;
node *right,*left;
};
// A queue node
class Queue
{
public:
int front, rear;
int size;
node**array;
};
// A utility function to create a new tree node
node* newNode(int data)
{
node* temp = new node();
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// A utility function to create a new Queue
Queue* createQueue(int size)
{
Queue* queue = new Queue();
queue->front = queue->rear = -1;
queue->size = size;
queue->array = new node*[queue->size * sizeof( node* )];
int i;
for (i = 0; i < size; ++i)
queue->array[i] = NULL;
return queue;
}
// Standard Queue Functions
int isEmpty(Queue* queue)
{
return queue->front == -1;
}
int isFull(Queue* queue)
{ return queue->rear == queue->size - 1; }
int hasOnlyOneItem(Queue* queue)
{ return queue->front == queue->rear; }
void Enqueue(node *root, Queue* queue)
{
if (isFull(queue))
return;
queue->array[++queue->rear] = root;
if (isEmpty(queue))
++queue->front;
}
node* Dequeue(Queue* queue)
{
if (isEmpty(queue))
return NULL;
node* temp = queue->array[queue->front];
if (hasOnlyOneItem(queue))
queue->front = queue->rear = -1;
else
++queue->front;
return temp;
}
node* getFront(Queue* queue)
{ return queue->array[queue->front]; }
// A utility function to check if a tree node
// has both left and right children
int hasBothChild(node* temp)
{
return temp && temp->left && temp->right;
}
// Function to insert a new node in complete binary tree
void insert(node **root, int data, Queue* queue)
{
// Create a new node for given data
node *temp = newNode(data);
// If the tree is empty, initialize the root with new node.
if (!*root)
*root = temp;
else
{
// get the front node of the queue.
node* front = getFront(queue);
// If the left child of this front node doesn’t exist, set the
// left child as the new node
if (!front->left)
front->left = temp;
// If the right child of this front node doesn’t exist, set the
// right child as the new node
else if (!front->right)
front->right = temp;
// If the front node has both the left child and right child,
// Dequeue() it.
if (hasBothChild(front))
Dequeue(queue);
}
// Enqueue() the new node for later insertions
Enqueue(temp, queue);
}
// Standard level order traversal to test above function
void levelOrder(node* root)
{
Queue* queue = createQueue(SIZE);
Enqueue(root, queue);
while (!isEmpty(queue))
{
node* temp = Dequeue(queue);
cout<<temp->data<<" ";
if (temp->left)
Enqueue(temp->left, queue);
if (temp->right)
Enqueue(temp->right, queue);
}
}
// Driver program to test above functions
int main()
{
node* root = NULL;
Queue* queue = createQueue(SIZE);
int i;
for(i = 1; i <= 12; ++i)
insert(&root, i, queue);
levelOrder(root);
return 0;
}
//This code is contributed by rathbhupendra
C
// Program for linked implementation of complete binary tree
#include <stdio.h>
#include <stdlib.h>
// For Queue Size
#define SIZE 50
// A tree node
struct node
{
int data;
struct node *right,*left;
};
// A queue node
struct Queue
{
int front, rear;
int size;
struct node* *array;
};
// A utility function to create a new tree node
struct node* newNode(int data)
{
struct node* temp = (struct node*) malloc(sizeof( struct node ));
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// A utility function to create a new Queue
struct Queue* createQueue(int size)
{
struct Queue* queue = (struct Queue*) malloc(sizeof( struct Queue ));
queue->front = queue->rear = -1;
queue->size = size;
queue->array = (struct node**) malloc
(queue->size * sizeof( struct node* ));
int i;
for (i = 0; i < size; ++i)
queue->array[i] = NULL;
return queue;
}
// Standard Queue Functions
int isEmpty(struct Queue* queue)
{
return queue->front == -1;
}
int isFull(struct Queue* queue)
{ return queue->rear == queue->size - 1; }
int hasOnlyOneItem(struct Queue* queue)
{ return queue->front == queue->rear; }
void Enqueue(struct node *root, struct Queue* queue)
{
if (isFull(queue))
return;
queue->array[++queue->rear] = root;
if (isEmpty(queue))
++queue->front;
}
struct node* Dequeue(struct Queue* queue)
{
if (isEmpty(queue))
return NULL;
struct node* temp = queue->array[queue->front];
if (hasOnlyOneItem(queue))
queue->front = queue->rear = -1;
else
++queue->front;
return temp;
}
struct node* getFront(struct Queue* queue)
{ return queue->array[queue->front]; }
// A utility function to check if a tree node
// has both left and right children
int hasBothChild(struct node* temp)
{
return temp && temp->left && temp->right;
}
// Function to insert a new node in complete binary tree
void insert(struct node **root, int data, struct Queue* queue)
{
// Create a new node for given data
struct node *temp = newNode(data);
// If the tree is empty, initialize the root with new node.
if (!*root)
*root = temp;
else
{
// get the front node of the queue.
struct node* front = getFront(queue);
// If the left child of this front node doesn’t exist, set the
// left child as the new node
if (!front->left)
front->left = temp;
// If the right child of this front node doesn’t exist, set the
// right child as the new node
else if (!front->right)
front->right = temp;
// If the front node has both the left child and right child,
// Dequeue() it.
if (hasBothChild(front))
Dequeue(queue);
}
// Enqueue() the new node for later insertions
Enqueue(temp, queue);
}
// Standard level order traversal to test above function
void levelOrder(struct node* root)
{
struct Queue* queue = createQueue(SIZE);
Enqueue(root, queue);
while (!isEmpty(queue))
{
struct node* temp = Dequeue(queue);
printf("%d ", temp->data);
if (temp->left)
Enqueue(temp->left, queue);
if (temp->right)
Enqueue(temp->right, queue);
}
}
// Driver program to test above functions
int main()
{
struct node* root = NULL;
struct Queue* queue = createQueue(SIZE);
int i;
for(i = 1; i <= 12; ++i)
insert(&root, i, queue);
levelOrder(root);
return 0;
}
Java
// Java code for the above approach
import java.util.LinkedList;
import java.util.Queue;
class Node {
int data;
Node left, right;
public Node(int data) {
this.data = data;
left = right = null;
}
}
public class CompleteBinaryTree {
Node root;
public CompleteBinaryTree() {
root = null;
}
// A utility function to create a new tree node
Node newNode(int data) {
Node temp = new Node(data);
return temp;
}
// Function to insert a new node in complete binary tree
void insert(int data) {
// Create a new node for given data
Node temp = newNode(data);
// If the tree is empty, initialize the root with new node.
if (root == null) {
root = temp;
return;
}
// Create a queue to do level order traversal
Queue<Node> q = new LinkedList<>();
q.add(root);
// Do level order traversal
while (!q.isEmpty()) {
Node front = q.peek();
// If the left child of this front node doesn't exist, set the
// left child as the new node
if (front.left == null) {
front.left = temp;
break;
}
// If the right child of this front node doesn't exist, set the
// right child as the new node
else if (front.right == null) {
front.right = temp;
break;
}
// If the front node has both the left child and right child,
// remove it from the queue
else {
q.remove();
}
// Enqueue the left and right children of the current node
if (front.left != null) {
q.add(front.left);
}
if (front.right != null) {
q.add(front.right);
}
}
}
// Standard level order traversal to test above function
void levelOrder() {
if (root == null) {
return;
}
Queue<Node> q = new LinkedList<>();
q.add(root);
while (!q.isEmpty()) {
Node temp = q.poll();
System.out.print(temp.data + " ");
if (temp.left != null) {
q.add(temp.left);
}
if (temp.right != null) {
q.add(temp.right);
}
}
}
public static void main(String[] args) {
CompleteBinaryTree tree = new CompleteBinaryTree();
for (int i = 1; i <= 12; i++) {
tree.insert(i);
}
tree.levelOrder();
}
}
// This code is contributed by ik_7
Python3
# Program for linked implementation
# of complete binary tree
# For Queue Size
SIZE = 50
# A tree node
class node:
def __init__(self, data):
self.data = data
self.right = None
self.left = None
# A queue node
class Queue:
def __init__(self):
self.front = None
self.rear = None
self.size = 0
self.array = []
# A utility function to
# create a new tree node
def newNode(data):
temp = node(data)
return temp
# A utility function to
# create a new Queue
def createQueue(size):
global queue
queue = Queue();
queue.front = queue.rear = -1;
queue.size = size;
queue.array = [None for i in range(size)]
return queue;
# Standard Queue Functions
def isEmpty(queue):
return queue.front == -1
def isFull(queue):
return queue.rear == queue.size - 1;
def hasOnlyOneItem(queue):
return queue.front == queue.rear;
def Enqueue(root):
if (isFull(queue)):
return;
queue.rear+=1
queue.array[queue.rear] = root;
if (isEmpty(queue)):
queue.front+=1;
def Dequeue():
if (isEmpty(queue)):
return None;
temp = queue.array[queue.front];
if(hasOnlyOneItem(queue)):
queue.front = queue.rear = -1;
else:
queue.front+=1
return temp;
def getFront(queue):
return queue.array[queue.front];
# A utility function to check
# if a tree node has both left
# and right children
def hasBothChild(temp):
return (temp and temp.left and
temp.right);
# Function to insert a new
# node in complete binary tree
def insert(root, data, queue):
# Create a new node for
# given data
temp = newNode(data);
# If the tree is empty,
# initialize the root
# with new node.
if not root:
root = temp;
else:
# get the front node of
# the queue.
front = getFront(queue);
# If the left child of this
# front node doesn’t exist,
# set the left child as the
# new node
if (not front.left):
front.left = temp;
# If the right child of this
# front node doesn’t exist, set
# the right child as the new node
elif (not front.right):
front.right = temp;
# If the front node has both the
# left child and right child,
# Dequeue() it.
if (hasBothChild(front)):
Dequeue();
# Enqueue() the new node for
# later insertions
Enqueue(temp);
return root
# Standard level order
# traversal to test above
# function
def levelOrder(root):
queue = createQueue(SIZE);
Enqueue(root);
while (not isEmpty(queue)):
temp = Dequeue();
print(temp.data, end = ' ')
if (temp.left):
Enqueue(temp.left);
if (temp.right):
Enqueue(temp.right);
# Driver code
if __name__ == "__main__":
root = None
queue = createQueue(SIZE);
for i in range(1, 13):
root=insert(root, i,
queue);
levelOrder(root);
# This code is contributed by Rutvik_56
C#
using System;
using System.Collections.Generic;
class Node
{
public int data;
public Node left, right;
public Node(int data)
{
this.data = data;
left = right = null;
}
}
class CompleteBinaryTree
{
Node root;
public CompleteBinaryTree()
{
root = null;
}
// A utility function to create a new tree node
Node newNode(int data)
{
Node temp = new Node(data);
return temp;
}
// Function to insert a new node in complete binary tree
void insert(int data)
{
// Create a new node for given data
Node temp = newNode(data);
// If the tree is empty, initialize the root with new node.
if (root == null)
{
root = temp;
return;
}
// Create a queue to do level order traversal
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
// Do level order traversal
while (q.Count > 0)
{
Node front = q.Peek();
// If the left child of this front node doesn't exist, set the
// left child as the new node
if (front.left == null)
{
front.left = temp;
break;
}
// If the right child of this front node doesn't exist, set the
// right child as the new node
else if (front.right == null)
{
front.right = temp;
break;
}
// If the front node has both the left child and right child,
// remove it from the queue
else
{
q.Dequeue();
}
// Enqueue the left and right children of the current node
if (front.left != null)
{
q.Enqueue(front.left);
}
if (front.right != null)
{
q.Enqueue(front.right);
}
}
}
// Standard level order traversal to test above function
void levelOrder()
{
if (root == null)
{
return;
}
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
while (q.Count > 0)
{
Node temp = q.Dequeue();
Console.Write(temp.data + " ");
if (temp.left != null)
{
q.Enqueue(temp.left);
}
if (temp.right != null)
{
q.Enqueue(temp.right);
}
}
}
// Driver program to test above functions
static void Main(string[] args)
{
CompleteBinaryTree tree = new CompleteBinaryTree();
for (int i = 1; i <= 12; i++)
{
tree.insert(i);
}
tree.levelOrder();
}
}
// This code is contributed by Vaibhav.
JavaScript
<script>
// Program for linked implementation
// of complete binary tree
// For Queue Size
const SIZE = 50;
// A tree node
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
class Queue {
constructor(size) {
this.front = -1;
this.rear = -1;
this.size = size;
this.array = new Array(size);
}
// Standard Queue Functions
isEmpty() {
return this.front === -1;
}
isFull() {
return this.rear === this.size - 1;
}
hasOnlyOneItem() {
return this.front === this.rear;
}
enqueue(root) {
if (this.isFull()) {
return;
}
this.rear++;
this.array[this.rear] = root;
if (this.isEmpty()) {
this.front++;
}
}
dequeue() {
if (this.isEmpty()) {
return null;
}
let temp = this.array[this.front];
if (this.hasOnlyOneItem()) {
this.front = this.rear = -1;
} else {
this.front++;
}
return temp;
}
getFront() {
return this.array[this.front];
}
}
// A utility function to create a new tree node
function newNode(data) {
return new Node(data);
}
// A utility function to create a new Queue
function createQueue(size) {
let queue = new Queue(size);
return queue;
}
// A utility function to check if a tree node has both left and right children
function hasBothChild(temp) {
return temp && temp.left && temp.right;
}
// Function to insert a new node in complete binary tree
function insert(root, data, queue) {
let temp = newNode(data);
// If the tree is empty, initialize the root with new node.
if (!root) {
root = temp;
} else {
// get the front node of the queue.
let front = queue.getFront();
if (!front.left) {
front.left = temp;
} else if (!front.right) {
front.right = temp;
}
// If the front node has both the left child and right child, Dequeue() it.
if (hasBothChild(front)) {
queue.dequeue();
}
}
// Enqueue() the new node for later insertions
queue.enqueue(temp);
return root;
}
// Standard level order traversal to test above function
function levelOrder(root) {
let queue = createQueue(50);
queue.enqueue(root);
while (!queue.isEmpty()) {
let temp = queue.dequeue();
document.write(temp.data);
if (temp.left) {
queue.enqueue(temp.left);
}
if (temp.right) {
queue.enqueue(temp.right);
}
}
}
let root = null;
let queue = createQueue(50);
for (let i = 1; i < 13; i++) {
root = insert(root, i, queue);
}
levelOrder(root);
</script>
Output: 1 2 3 4 5 6 7 8 9 10 11 12
Similar Reads
Extract Leaves of a Binary Tree in a Doubly Linked List Given a Binary Tree, extract all leaves of it in a Doubly Linked List (DLL). Note that the DLL need to be created in-place. Assume that the node structure of DLL and Binary Tree is same, only the meaning of left and right pointers are different. In DLL, left means previous pointer, and right means n
11 min read
Construct Complete Binary Tree from its Linked List Representation Given the Linked List Representation of a Complete Binary Tree, the task is to construct the complete binary tree. The complete binary tree is represented as a linked list in a way where if the root node is stored at position i, its left, and right children are stored at position 2*i+1, and 2*i+2 re
10 min read
Flatten a binary tree into linked list | Set-3 Given a binary tree, flatten it into linked list in-place. Usage of auxiliary data structure is not allowed. After flattening, left of each node should point to NULL and right should contain next node in level order. Examples: Input: 1 / \ 2 5 / \ \ 3 4 6 Output: 1 \ 2 \ 3 \ 4 \ 5 \ 6 Input: 1 / \ 3
8 min read
Binary Tree (Array implementation) Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
6 min read
Complete Binary Tree We know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
7 min read