model = models.Sequential([
layers.Conv2D(32, (3,3), activation='relu', padding='same', input_shape=(32,32,3)),
layers.MaxPooling2D(2,2),
layers.Conv2D(64, (3,3), activation='relu', padding='same'),
layers.MaxPooling2D(2,2),
layers.Conv2D(64, (3,3), activation='relu', padding='same'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(num_classes, activation='softmax')
])
model.summary()