Open In App

Matplotlib.axes.Axes.set_clip_on() in Python

Last Updated : 30 Apr, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.set_clip_on() Function

The Axes.set_clip_on() function in axes module of matplotlib library is used to set whether the artist uses clipping.
Syntax: Axes.set_clip_on(self, b) Parameters: This method accepts only one parameters.
  • b: This parameter contains the boolean value.
Returns: This method does not return any value.
Below examples illustrate the matplotlib.axes.Axes.set_clip_on() function in matplotlib.axes: Example 1: Python3
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Ellipse

delta = 45.0

angles = np.arange(0, 360 + delta, delta)
ells = [Ellipse((2, 2), 5, 2, a) for a in angles]

fig, ax = plt.subplots()

for e in ells:
    e.set_alpha(0.1)
    ax.add_artist(e)
    
ax.set_xlim(-1, 5)
ax.set_ylim(-1, 5)
ax.set_clip_on(False)
  
fig.suptitle('matplotlib.axes.Axes.set_clip_on()\
 function Example\n\n', fontweight ="bold")

plt.show()
Output: Example 2: Python3
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.transforms as mtransforms


x0 = -0.1

arrow_style ="simple, head_length = 15,\
 head_width = 30, tail_width = 10"
rect_style ="simple, tail_width = 25"
line_style ="simple, tail_width = 1"

fig, ax = plt.subplots()

trans = mtransforms.blended_transform_factory(ax.transAxes, ax.transData)

y_tail = 5
y_head = 15
arrow1 = mpatches.FancyArrowPatch((x0, y_tail), 
                                  (x0, y_head),
                                   arrowstyle = arrow_style,
                                   transform = trans)
arrow1.set_clip_on(False)
ax.add_patch(arrow1)

ax.set_xlim(0, 30)
ax.set_ylim(0, 80)
  
fig.suptitle('matplotlib.axes.Axes.set_clip_on() \
function Example\n\n', fontweight ="bold")

plt.show()
Output:

Next Article
Practice Tags :

Similar Reads