Open In App

Matplotlib.axis.Axis.set_rasterized() function in Python

Last Updated : 05 Jun, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.

Matplotlib.axis.Axis.set_rasterized() Function

The Axis.set_rasterized() function in axis module of matplotlib library is used to force rasterized (bitmap) drawing in vector backend output. 
 

Syntax: Axis.set_rasterized(self, rasterized) 
 

Parameters: This method accepts the following parameters. 

  • rasterized: This parameter is the boolean value.


Return value: This method does not return any value. 


Below examples illustrate the matplotlib.axis.Axis.set_rasterized() function in matplotlib.axis:


Example 1:

Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
import matplotlib.pyplot as plt  
     
    
d = np.arange(49).reshape(7, 7)  
xx, yy = np.meshgrid(np.arange(8), np.arange(8))  
     
fig, ax = plt.subplots()  
     
ax.set_aspect(1)  
m = ax.pcolormesh(xx, yy, d)  
Axis.set_rasterized(m, True)  

fig.suptitle('matplotlib.axis.Axis.set_rasterized() \
function Example\n', fontweight ="bold")  
  
plt.show() 

Output: 
 


Example 2:

Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt  
import matplotlib.colors as mcolors  
import matplotlib.gridspec as gridspec  
import numpy as np  
     
     
arr = np.arange(20).reshape((4, 5))  
norm = mcolors.Normalize(vmin = 0., vmax = 20.)  
     
pc_kwargs = {'cmap': 'BuGn', 'norm': norm}  
     
fig, ax = plt.subplots( )  
     
im = ax.pcolormesh(arr, **pc_kwargs)  
fig.colorbar(im, ax = ax, shrink = 0.7)  
Axis.set_rasterized(im, False)  

fig.suptitle('matplotlib.axis.Axis.set_rasterized() \
function Example\n', fontweight ="bold")  
  
plt.show() 

Output: 
 


 


Next Article
Practice Tags :

Similar Reads