Maximum absolute difference between sum of subarrays of size K
Last Updated :
15 Jul, 2025
Given an array arr[] of size N and an integer K, the task is to find maximum absolute difference between the sum of subarrays of size K.
Examples :
Input: arr[] = {-2, -3, 4, -1, -2, 1, 5, -3}, K = 3
Output: 6
Explanation::
Sum of subarray (-2, -3, 4) = -1
Sum of subarray (-3, 4, -1) = 0
Sum of subarray (4, -1, -2) = 1
Sum of subarray (-1, -2, 1) = -2
Sum of subarray (-2, 1, 5) = 4
Sum of subarray (1, 5, -3) = 3
So maximum absolute difference between sum of subarray of size 3 is is (4 - (-2)) = 6.
Input: arr [ ] = {2, 5, -1, 7, -3, -1, -2}, K = 4
Output: 12
Brute Force Approach:
- Initialize a variable max_diff to zero.
- Loop through all pairs of starting indices i and j, where i ranges from 0 to N-K and j ranges from i+1 to N-K.
- For each pair of starting indices i and j, compute the sum of the subarray of size K starting at i, and the sum of the subarray of size K starting at j. To do this, we use a loop that adds up the K elements starting at i and j, respectively.
- Compute the absolute difference between the two sums computed in the previous step, and update the max_diff variable if this absolute difference is greater than the current value of max_diff.
- Return the value of max_diff.
Below is the implementation of the above approach :
C++
// C++ program to find the
// maximum absolute difference
// between the sum of all
// subarrays of size K
#include <bits/stdc++.h>
using namespace std;
// Return absolute difference
// between sum of all subarrays
// of size k
int MaxAbsSumOfKsubArray(int arr[], int K, int N)
{
int max_diff = 0;
for (int i = 0; i <= N-K; i++) {
for (int j = i+1; j <= N-K; j++) {
int sum1 = 0, sum2 = 0;
for (int k = 0; k < K; k++) {
sum1 += arr[i+k];
sum2 += arr[j+k];
}
max_diff = max(max_diff, abs(sum1 - sum2));
}
}
return max_diff;
}
// Driver code
int main()
{
int arr[] = { -2, -3, 4, -1,
-2, 1, 5, -3 };
int K = 3;
int N = sizeof(arr) / sizeof(arr[0]);
cout << MaxAbsSumOfKsubArray(arr, K, N)
<< endl;
return 0;
}
Java
import java.util.*;
public class Main {
// Return absolute difference
// between sum of all subarrays
// of size k
static int MaxAbsSumOfKsubArray(int[] arr, int K, int N) {
int max_diff = 0;
for (int i = 0; i <= N - K; i++) {
for (int j = i + 1; j <= N - K; j++) {
int sum1 = 0, sum2 = 0;
for (int k = 0; k < K; k++) {
sum1 += arr[i + k];
sum2 += arr[j + k];
}
max_diff = Math.max(max_diff, Math.abs(sum1 - sum2));
}
}
return max_diff;
}
// Driver code
public static void main(String[] args) {
int[] arr = { -2, -3, 4, -1, -2, 1, 5, -3 };
int K = 3;
int N = arr.length;
System.out.println(MaxAbsSumOfKsubArray(arr, K, N));
}
}
// This code is contributed by Prajwal Kandekar
Python3
def max_abs_sum_of_k_subarray(arr, K, N):
# Function to find the maximum absolute difference between the sums of two subarrays of length K
max_diff = 0
# Iterate through all possible starting indices of the first subarray
for i in range(N-K+1):
# Iterate through all possible starting indices of the second subarray
for j in range(i+1, N-K+1):
sum1 = 0
sum2 = 0
# Compute the sum of elements in the first subarray
for k in range(K):
sum1 += arr[i+k]
# Compute the sum of elements in the second subarray
for k in range(K):
sum2 += arr[j+k]
# Update the maximum difference if the absolute difference between the sums is greater
max_diff = max(max_diff, abs(sum1 - sum2))
return max_diff
# Driver code
arr = [-2, -3, 4, -1, -2, 1, 5, -3]
K = 3
N = len(arr)
print(max_abs_sum_of_k_subarray(arr, K, N))
C#
// C# program to find the
// maximum absolute difference
// between the sum of all
// subarrays of size K
using System;
public static class GFG {
// Return absolute difference
// between sum of all subarrays
// of size k
static int MaxAbsSumOfKsubArray(int[] arr, int K, int N) {
int max_diff = 0;
for (int i = 0; i <= N - K; i++) {
for (int j = i + 1; j <= N - K; j++) {
int sum1 = 0, sum2 = 0;
for (int k = 0; k < K; k++) {
sum1 += arr[i + k];
sum2 += arr[j + k];
}
max_diff = Math.Max(max_diff, Math.Abs(sum1 - sum2));
}
}
return max_diff;
}
// Driver code
public static void Main() {
int[] arr = { -2, -3, 4, -1, -2, 1, 5, -3 };
int K = 3;
int N = arr.Length;
Console.WriteLine(MaxAbsSumOfKsubArray(arr, K, N));
}
}
// This code is contributed by Utkarsh Kumar
JavaScript
// Javascript program
// Return absolute difference
// between sum of all subarrays
// of size k
function maxAbsSumOfKsubArray(arr, K, N) {
let maxDiff = 0;
for (let i = 0; i <= N - K; i++) {
for (let j = i + 1; j <= N - K; j++) {
let sum1 = 0, sum2 = 0;
for (let k = 0; k < K; k++) {
sum1 += arr[i + k];
sum2 += arr[j + k];
}
maxDiff = Math.max(maxDiff, Math.abs(sum1 - sum2));
}
}
return maxDiff;
}
// Driver code
const arr = [-2, -3, 4, -1, -2, 1, 5, -3];
const K = 3;
const N = arr.length;
console.log(maxAbsSumOfKsubArray(arr, K, N));
Time Complexity: O(N^3)
Auxiliary Space: O(1)
Efficient Approach
The idea is to use Sliding Window Technique. Follow the steps below to solve the problem:
- Check if K is greater than N then return -1.
-
- maxSum : Store maximum sum of K size subarray.
- minSum : Store minimum sum of K size subarray.
- sum : Store current sum of K size subarray.
- start : Remove left most element which is no longer part of K size subarray.
- Calculate the sum of first K size subarray and update maxSum and minSum, decrement sum by arr[start] and increment start by 1.
- Traverse arr from K to N and do the following operations:
- Increment sum by arr[i].
- Update maxSum and minSum.
- Decrement sum by arr[start].
- Increment start by 1.
- Return absolute difference between maxSum and minSum.
Below is the implementation of the above approach :
C++
// C++ program to find the
// maximum absolute difference
// between the sum of all
// subarrays of size K
#include <bits/stdc++.h>
using namespace std;
// Return absolute difference
// between sum of all subarrays
// of size k
int MaxAbsSumOfKsubArray(int arr[],
int K, int N)
{
// Stores maximum sum of
// all K size subarrays
int maxSum = INT_MIN;
// Stores minimum sum of
// all K size subarray
int minSum = INT_MAX;
// Stores the sum of current
// subarray of size K
int sum = 0;
// Starting index of the
// current subarray
int start = 0;
int i = 0;
if (N < K)
return -1;
// Calculate the sum of
// first K elements
while (i < K)
{
sum += arr[i];
i++;
}
// Update maxSum and minSum
maxSum = max(maxSum, sum);
minSum = min(minSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
// Traverse arr for the
// remaining subarrays
while (i < N)
{
// Increment sum by arr[i]
sum += arr[i];
// Increment i
i++;
// Update maxSum and minSum
maxSum = max(maxSum, sum);
minSum = min(minSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
}
// Return absolute difference
// between maxSum and minSum
return abs(maxSum - minSum);
}
// Driver code
int main()
{
int arr[] = { -2, -3, 4, -1,
-2, 1, 5, -3 };
int K = 3;
int N = sizeof(arr) / sizeof(arr[0]);
cout << MaxAbsSumOfKsubArray(arr, K, N)
<< endl;
return 0;
}
// This code is contributed by divyeshrabadiya07
Java
// Java program to find the
// maximum absolute difference
// between the sum of all
// subarrays of size K
import java.util.*;
class GFG {
// Return absolute difference
// between sum of all subarrays
// of size k
static int MaxAbsSumOfKsubArray(
int[] arr,
int K, int N)
{
// Stores maximum sum of
// all K size subarrays
int maxSum = Integer.MIN_VALUE;
// Stores minimum sum of
// all K size subarray
int minSum = Integer.MAX_VALUE;
// Stores the sum of current
// subarray of size K
int sum = 0;
// Starting index of the
// current subarray
int start = 0;
int i = 0;
if (N < K)
return -1;
// Calculate the sum of
// first K elements
while (i < K) {
sum += arr[i];
i++;
}
// Update maxSum and minSum
maxSum = Math.max(maxSum, sum);
minSum = Math.min(minSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
// Traverse arr for the
// remaining subarrays
while (i < N) {
// Increment sum by arr[i]
sum += arr[i];
// Increment i
i++;
// Update maxSum and minSum
maxSum = Math.max(maxSum, sum);
minSum = Math.min(minSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
}
// Return absolute difference
// between maxSum and minSum
return Math.abs(maxSum - minSum);
}
// Driver code
public static void main(String[] args)
{
int[] arr = { -2, -3, 4, -1,
-2, 1, 5, -3 };
int K = 3;
int N = arr.length;
System.out.println(
MaxAbsSumOfKsubArray(
arr, K, N));
}
}
Python3
# Python3 program to find the
# maximum absolute difference
# between the sum of all
# subarrays of size K
import sys
# Return absolute difference
# between sum of all subarrays
# of size k
def MaxAbsSumOfKsubArray(arr, K, N):
# Stores maximum sum of
# all K size subarrays
maxSum = - sys.maxsize - 1
# Stores minimum sum of
# all K size subarray
minSum = sys.maxsize
# Stores the sum of current
# subarray of size K
sum = 0
# Starting index of the
# current subarray
start = 0
i = 0
if (N < K):
return -1
# Calculate the sum of
# first K elements
while (i < K):
sum += arr[i]
i += 1
# Update maxSum and minSum
maxSum = max(maxSum, sum)
minSum = min(minSum, sum)
# Decrement sum by arr[start]
# and increment start by 1
sum -= arr[start]
start += 1
# Traverse arr for the
# remaining subarrays
while (i < N):
# Increment sum by arr[i]
sum += arr[i]
# Increment i
i += 1
# Update maxSum and minSum
maxSum = max(maxSum, sum)
minSum = min(minSum, sum)
# Decrement sum by arr[start]
# and increment start by 1
sum -= arr[start]
start += 1
# Return absolute difference
# between maxSum and minSum
return abs(maxSum - minSum)
# Driver code
arr = [ -2, -3, 4, -1,
-2, 1, 5, -3 ]
K = 3
N = len(arr)
print(MaxAbsSumOfKsubArray(arr, K, N))
# This code is contributed by sanjoy_62
C#
// C# program to find the
// maximum absolute difference
// between the sum of all
// subarrays of size K
using System;
class GFG{
// Return absolute difference
// between sum of all subarrays
// of size k
static int MaxAbsSumOfKsubArray(
int[] arr,
int K, int N)
{
// Stores maximum sum of
// all K size subarrays
int MaxSum = Int32.MinValue;
// Stores minimum sum of
// all K size subarray
int MinSum = Int32.MaxValue;
// Stores the sum of current
// subarray of size K
int sum = 0;
// Starting index of the
// current subarray
int start = 0;
int i = 0;
if (N < K)
return -1;
// Calculate the sum of
// first K elements
while (i < K)
{
sum += arr[i];
i++;
}
// Update maxSum and minSum
MaxSum = Math.Max(MaxSum, sum);
MinSum = Math.Min(MinSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
// Traverse arr for the
// remaining subarrays
while (i < N)
{
// Increment sum by arr[i]
sum += arr[i];
// Increment i
i++;
// Update maxSum and minSum
MaxSum = Math.Max(MaxSum, sum);
MinSum = Math.Min(MinSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
}
// Return absolute difference
// between maxSum and minSum
return Math.Abs(MaxSum - MinSum);
}
// Driver code
public static void Main(String[] args)
{
int[] arr = { -2, -3, 4, -1,
-2, 1, 5, -3 };
int K = 3;
int N = arr.Length;
Console.Write(MaxAbsSumOfKsubArray(arr, K, N));
}
}
// This code is contributed
// by shivanisinghss2110
JavaScript
<script>
// Javascript program to find the
// maximum absolute difference
// between the sum of all
// subarrays of size K
// Return absolute difference
// between sum of all subarrays
// of size k
function MaxAbsSumOfKsubArray(arr, K, N)
{
// Stores maximum sum of
// all K size subarrays
let maxSum = Number.MIN_VALUE;
// Stores minimum sum of
// all K size subarray
let minSum = Number.MAX_VALUE;
// Stores the sum of current
// subarray of size K
let sum = 0;
// Starting index of the
// current subarray
let start = 0;
let i = 0;
if (N < K)
return -1;
// Calculate the sum of
// first K elements
while (i < K)
{
sum += arr[i];
i++;
}
// Update maxSum and minSum
maxSum = Math.max(maxSum, sum);
minSum = Math.min(minSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
// Traverse arr for the
// remaining subarrays
while (i < N)
{
// Increment sum by arr[i]
sum += arr[i];
// Increment i
i++;
// Update maxSum and minSum
maxSum = Math.max(maxSum, sum);
minSum = Math.min(minSum, sum);
// Decrement sum by arr[start]
// and increment start by 1
sum -= arr[start++];
}
// Return absolute difference
// between maxSum and minSum
return Math.abs(maxSum - minSum);
}
let arr = [ -2, -3, 4, -1, -2, 1, 5, -3 ];
let K = 3;
let N = arr.length;
document.write(MaxAbsSumOfKsubArray(arr, K, N));
</script>
Time Complexity: O (N)
Auxiliary Space: O (1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem