Maximum decimal value path in a binary matrix
Last Updated :
24 Mar, 2023
Given binary square matrix [n*n]. Find maximum integer value in a path from top left to bottom right. We compute integer value using bits of traversed path. We start at index [0,0] and end at index [n-1][n-1]. from index [i, j], we can move [i, j+1] or [i+1, j].
Examples:
Input : mat[][] = {{1, 1, 0, 1},
{0, 1, 1, 0},
{1, 0, 0, 1},
{1, 0, 1, 1}}
Output : 111
Explanation :
Path : (0,0) -> (0,1) -> (1,1) -> (1,2) ->
(2,2) -> (3,2) ->(3,3)
Decimal value : 1*(2^0) + 1*(2^1) + 1*(2^2) + 1*(2^3) +
0*(2^4) + 1*(2^5) + 1*(2^6) = 111
The above problem can be recursively defined as below:
// p indicates power of 2, initially p = i = j = 0
MaxDecimalValue(mat, i, j, p)
// If i or j is our of boundary
If i >= n || j >= n
return 0
// Compute rest of matrix find maximum decimal value
result max(MaxDecimalValue(mat, i, j+1, p+1),
MaxDecimalValue(mat, i+1, j, p+1))
If mat[i][j] == 1
return power(2, p) + result
Else
return result
Below is the implementation of above recursive algorithm.
C++
// C++ program to find maximum decimal value path in
// binary matrix
#include<bits/stdc++.h>
using namespace std;
#define N 4
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
long long int maxDecimalValue(int mat[][N], int i, int j,
int p)
{
// Out of matrix boundary
if (i >= N || j >= N )
return 0;
int result = max(maxDecimalValue(mat, i, j+1, p+1),
maxDecimalValue(mat, i+1, j, p+1));
// If current matrix value is 1 then return result +
// power(2, p) else result
if (mat[i][j] == 1)
return pow(2, p) + result;
else
return result;
}
//Driver program
int main()
{
int mat[][4] = {{ 1 ,1 ,0 ,1 },
{ 0 ,1 ,1 ,0 },
{ 1 ,0 ,0 ,1 },
{ 1 ,0 ,1 ,1 },
};
cout << maxDecimalValue(mat, 0, 0, 0) << endl;
return 0;
}
Java
// Java program to find maximum decimal value path in
// binary matrix
class GFG {
static final int N = 4;
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
static int maxDecimalValue(int mat[][], int i, int j,
int p) {
// Out of matrix boundary
if (i >= N || j >= N) {
return 0;
}
int result = Math.max(maxDecimalValue(mat, i, j + 1, p + 1),
maxDecimalValue(mat, i + 1, j, p + 1));
// If current matrix value is 1 then return result +
// power(2, p) else result
if (mat[i][j] == 1) {
return (int) (Math.pow(2, p) + result);
} else {
return result;
}
}
// Driver program
public static void main(String[] args) {
int mat[][] = {{1, 1, 0, 1},
{0, 1, 1, 0},
{1, 0, 0, 1},
{1, 0, 1, 1},};
System.out.println(maxDecimalValue(mat, 0, 0, 0));
}
}
//this code contributed by Rajput-Ji
Python3
# Python3 program to find maximum decimal
# value path in binary matrix
N =4
# Returns maximum decimal value in binary
# matrix. Here p indicate power of 2
def maxDecimalValue(mat, i, j, p):
# Out of matrix boundary
if i >= N or j >= N:
return 0
result = max(
maxDecimalValue(mat, i, j+1, p+1),
maxDecimalValue(mat, i+1, j, p+1))
# If current matrix value is 1 then
# return result + power(2, p) else
# result
if mat[i][j] == 1:
return pow(2, p) + result
else:
return result
# Driver Program
mat = [ [1, 1, 0, 1],
[0, 1, 1, 0],
[1, 0, 0, 1],
[1, 0, 1, 1] ]
print(maxDecimalValue(mat, 0, 0, 0))
# This code is contributed by Shrikant13.
C#
// C# program to find maximum decimal value path in
// binary matrix
using System;
class GFG {
static int N = 4;
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
static int maxDecimalValue(int[,] mat, int i,
int j,int p)
{
// Out of matrix boundary
if (i >= N || j >= N) {
return 0;
}
int result = Math.Max(maxDecimalValue(mat, i, j + 1, p + 1),
maxDecimalValue(mat, i + 1, j, p + 1));
// If current matrix value is 1 then return result +
// power(2, p) else result
if (mat[i,j] == 1)
{
return (int) (Math.Pow(2, p) + result);
} else
{
return result;
}
}
// Driver program
public static void Main() {
int[,] mat = {{1, 1, 0, 1},
{0, 1, 1, 0},
{1, 0, 0, 1},
{1, 0, 1, 1},};
Console.Write(maxDecimalValue(mat, 0, 0, 0));
}
}
// This code is contributed by Ita_c.
PHP
<?php
// PHP program to find maximum
// decimal value path in binary
// matrix
// Returns maximum decimal value
// in binary matrix. Here p
// indicate power of 2
function maxDecimalValue($mat, $i,
$j, $p)
{
$N=4;
// Out of matrix boundary
if ($i >= $N || $j >= $N )
return 0;
$result = max(maxDecimalValue($mat, $i,
$j + 1, $p + 1),
maxDecimalValue($mat, $i + 1,
$j, $p + 1));
// If current matrix value
// is 1 then return result +
// power(2, p) else result
if ($mat[$i][$j] == 1)
return pow(2, $p) + $result;
else
return $result;
}
// Driver Code
$mat = array(array(1 ,1 ,0 ,1),
array(0 ,1 ,1 ,0),
array(1 ,0 ,0 ,1),
array(1 ,0 ,1 ,1));
echo maxDecimalValue($mat, 0, 0, 0) ;
// This code is contributed by nitin mittal.
?>
JavaScript
<script>
// JavaScript program to find maximum
// decimal value path in binary matrix
let N = 4;
// Returns maximum decimal value in
// binary matrix.Here p indicate power of 2
function maxDecimalValue(mat, i, j, p)
{
// Out of matrix boundary
if (i >= N || j >= N)
{
return 0;
}
let result = Math.max(maxDecimalValue(mat, i, j + 1,
p + 1),
maxDecimalValue(mat, i + 1, j,
p + 1));
// If current matrix value is 1 then
// return result + power(2, p) else result
if (mat[i][j] == 1)
{
return (Math.pow(2, p) + result);
}
else
{
return result;
}
}
// Driver Code
let mat = [ [ 1, 1, 0, 1 ],
[ 0, 1, 1, 0 ],
[ 1, 0, 0, 1 ],
[ 1, 0, 1, 1 ] ];
document.write(maxDecimalValue(mat, 0, 0, 0));
// This code is contributed by souravghosh0416
</script>
Output:
111
The time complexity of above recursive solution is exponential.
Space Complexity:O(1),since no extra space required.
Here matrix [3][3]
(2 2)
/ \
(1 2) (2 1)
/ \ / \
(0 2) (1 1) (1 1) (2 1)
/ \ / \ / \ / \
. . . . . . . .
. . . . . . . . and so no
If we see recursion tree of above recursive solution, we can observe overlapping sub-problems. Since the problem has overlapping subproblems, we can solve it efficiently using Dynamic Programming. Below is Dynamic Programming based solution.
Below is the implementation of above problem using Dynamic Programming
C++
// C++ program to find Maximum decimal value Path in
// Binary matrix
#include<bits/stdc++.h>
using namespace std;
#define N 4
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
long long int MaximumDecimalValue(int mat[][N], int n)
{
int dp[n][n];
memset(dp, 0, sizeof(dp));
if (mat[0][0] == 1)
dp[0][0] = 1 ; // 1*(2^0)
// Compute binary stream of first row of matrix
// and store result in dp[0][i]
for (int i=1; i<n; i++)
{
// indicate 1*(2^i) + result of previous
if (mat[0][i] == 1)
dp[0][i] = dp[0][i-1] + pow(2, i);
// indicate 0*(2^i) + result of previous
else
dp[0][i] = dp[0][i-1];
}
// Compute binary stream of first column of matrix
// and store result in dp[i][0]
for (int i = 1 ; i <n ; i++ )
{
// indicate 1*(2^i) + result of previous
if (mat[i][0] == 1)
dp[i][0] = dp[i-1][0] + pow(2, i);
// indicate 0*(2^i) + result of previous
else
dp[i][0] = dp[i-1][0];
}
// Traversal rest Binary matrix and Compute maximum
// decimal value
for (int i=1 ; i < n ; i++ )
{
for (int j=1 ; j < n ; j++ )
{
// Here (i+j) indicate the current power of
// 2 in path that is 2^(i+j)
if (mat[i][j] == 1)
dp[i][j] = max(dp[i][j-1], dp[i-1][j]) +
pow(2, i+j);
else
dp[i][j] = max(dp[i][j-1], dp[i-1][j]);
}
}
// Return maximum decimal value in binary matrix
return dp[n-1][n-1];
}
// Driver program
int main()
{
int mat[][4] = {{ 1 ,1 ,0 ,1 },
{ 0 ,1 ,1 ,0 },
{ 1 ,0 ,0 ,1 },
{ 1 ,0 ,1 ,1 },
};
cout << MaximumDecimalValue(mat, 4) << endl;
return 0;
}
Java
// Java program to find Maximum decimal value Path in
// Binary matrix
public class GFG {
final static int N = 4;
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
static int MaximumDecimalValue(int mat[][], int n) {
int dp[][] = new int[n][n];
if (mat[0][0] == 1) {
dp[0][0] = 1; // 1*(2^0)
}
// Compute binary stream of first row of matrix
// and store result in dp[0][i]
for (int i = 1; i < n; i++) {
// indicate 1*(2^i) + result of previous
if (mat[0][i] == 1) {
dp[0][i] = (int) (dp[0][i - 1] + Math.pow(2, i));
} // indicate 0*(2^i) + result of previous
else {
dp[0][i] = dp[0][i - 1];
}
}
// Compute binary stream of first column of matrix
// and store result in dp[i][0]
for (int i = 1; i < n; i++) {
// indicate 1*(2^i) + result of previous
if (mat[i][0] == 1) {
dp[i][0] = (int) (dp[i - 1][0] + Math.pow(2, i));
} // indicate 0*(2^i) + result of previous
else {
dp[i][0] = dp[i - 1][0];
}
}
// Traversal rest Binary matrix and Compute maximum
// decimal value
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
// Here (i+j) indicate the current power of
// 2 in path that is 2^(i+j)
if (mat[i][j] == 1) {
dp[i][j] = (int) (Math.max(dp[i][j - 1], dp[i - 1][j])
+ Math.pow(2, i + j));
} else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
// Return maximum decimal value in binary matrix
return dp[n - 1][n - 1];
}
// Driver program
public static void main(String[] args) {
int mat[][] = {{1, 1, 0, 1},
{0, 1, 1, 0},
{1, 0, 0, 1},
{1, 0, 1, 1},};
System.out.println(MaximumDecimalValue(mat, 4));
}
}
/*This code is contributed by Rajput-Ji*/
Python3
# Python3 program to find Maximum decimal
# value Path in
# Binary matrix
N=4
# Returns maximum decimal value in binary matrix.
# Here p indicate power of 2
def MaximumDecimalValue(mat, n):
dp=[[0 for i in range(n)] for i in range(n)]
if (mat[0][0] == 1):
dp[0][0] = 1 # 1*(2^0)
# Compute binary stream of first row of matrix
# and store result in dp[0][i]
for i in range(1,n):
# indicate 1*(2^i) + result of previous
if (mat[0][i] == 1):
dp[0][i] = dp[0][i-1] + 2**i
# indicate 0*(2^i) + result of previous
else:
dp[0][i] = dp[0][i-1]
# Compute binary stream of first column of matrix
# and store result in dp[i][0]
for i in range(1,n):
# indicate 1*(2^i) + result of previous
if (mat[i][0] == 1):
dp[i][0] = dp[i-1][0] + 2**i
# indicate 0*(2^i) + result of previous
else:
dp[i][0] = dp[i-1][0]
# Traversal rest Binary matrix and Compute maximum
# decimal value
for i in range(1,n):
for j in range(1,n):
# Here (i+j) indicate the current power of
# 2 in path that is 2^(i+j)
if (mat[i][j] == 1):
dp[i][j] = max(dp[i][j-1], dp[i-1][j])+(2**(i+j))
else:
dp[i][j] = max(dp[i][j-1], dp[i-1][j])
# Return maximum decimal value in binary matrix
return dp[n-1][n-1]
# Driver program
if __name__=='__main__':
mat = [[ 1 ,1 ,0 ,1 ],
[ 0 ,1 ,1 ,0 ],
[ 1 ,0 ,0 ,1 ],
[ 1 ,0 ,1 ,1 ]]
print (MaximumDecimalValue(mat, 4))
#this code is contributed by sahilshelangia
C#
// C# program to find Maximum decimal value Path in
// Binary matrix
using System;
public class GFG {
readonly static int N = 4;
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
static int MaximumDecimalValue(int [,]mat, int n) {
int [,]dp = new int[n,n];
if (mat[0,0] == 1) {
dp[0,0] = 1; // 1*(2^0)
}
// Compute binary stream of first row of matrix
// and store result in dp[0,i]
for (int i = 1; i < n; i++) {
// indicate 1*(2^i) + result of previous
if (mat[0,i] == 1) {
dp[0,i] = (int) (dp[0,i - 1] + Math.Pow(2, i));
} // indicate 0*(2^i) + result of previous
else {
dp[0,i] = dp[0,i - 1];
}
}
// Compute binary stream of first column of matrix
// and store result in dp[i,0]
for (int i = 1; i < n; i++) {
// indicate 1*(2^i) + result of previous
if (mat[i,0] == 1) {
dp[i,0] = (int) (dp[i - 1,0] + Math.Pow(2, i));
} // indicate 0*(2^i) + result of previous
else {
dp[i,0] = dp[i - 1,0];
}
}
// Traversal rest Binary matrix and Compute maximum
// decimal value
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
// Here (i+j) indicate the current power of
// 2 in path that is 2^(i+j)
if (mat[i,j] == 1) {
dp[i,j] = (int) (Math.Max(dp[i,j - 1], dp[i - 1,j])
+ Math.Pow(2, i + j));
} else {
dp[i,j] = Math.Max(dp[i,j - 1], dp[i - 1,j]);
}
}
}
// Return maximum decimal value in binary matrix
return dp[n - 1,n - 1];
}
// Driver program
public static void Main() {
int [,]mat = {{1, 1, 0, 1},
{0, 1, 1, 0},
{1, 0, 0, 1},
{1, 0, 1, 1},};
Console.Write(MaximumDecimalValue(mat, 4));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript program to find Maximum decimal value Path in
// Binary matrix
let N = 4;
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
function MaximumDecimalValue(mat,n)
{
let dp=new Array(n);
for(let i = 0; i < n; i++)
{
dp[i] = new Array(n);
for(let j = 0; j < n; j++)
{
dp[i][j] = 0;
}
}
if (mat[0][0] == 1) {
dp[0][0] = 1; // 1*(2^0)
}
// Compute binary stream of first row of matrix
// and store result in dp[0][i]
for (let i = 1; i < n; i++)
{
// indicate 1*(2^i) + result of previous
if (mat[0][i] == 1)
{
dp[0][i] = dp[0][i - 1] + Math.pow(2, i);
}
// indicate 0*(2^i) + result of previous
else
{
dp[0][i] = dp[0][i - 1];
}
}
// Compute binary stream of first column of matrix
// and store result in dp[i][0]
for (let i = 1; i < n; i++)
{
// indicate 1*(2^i) + result of previous
if (mat[i][0] == 1)
{
dp[i][0] = Math.floor(dp[i - 1][0] + Math.pow(2, i));
}
// indicate 0*(2^i) + result of previous
else
{
dp[i][0] = dp[i - 1][0];
}
}
// Traversal rest Binary matrix and Compute maximum
// decimal value
for (let i = 1; i < n; i++)
{
for (let j = 1; j < n; j++)
{
// Here (i+j) indicate the current power of
// 2 in path that is 2^(i+j)
if (mat[i][j] == 1)
{
dp[i][j] = Math.floor(Math.max(dp[i][j - 1], dp[i - 1][j])
+ Math.pow(2, i + j));
}
else
{
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
// Return maximum decimal value in binary matrix
return dp[n - 1][n - 1];
}
// Driver program
let mat = [[ 1 ,1 ,0 ,1 ],
[ 0 ,1 ,1 ,0 ],
[ 1 ,0 ,0 ,1 ],
[ 1 ,0 ,1 ,1 ]];
document.write(MaximumDecimalValue(mat, 4))
// This code is contributed by rag2127.
</script>
Output:
111
Time Complexity : O(n2)
Auxiliary space : O(n2)
Similar Reads
Find maximum path length in a binary matrix Given a square matrix mat every element of which is either 0 or 1. A value 1 means connected and 0 means not connected. The task is to find the largest length of a path in the matrix after changing atmost one 0 to 1. A path is a 4-directionally connected group of 1s. Examples: Input: mat[][] = {{1,
9 min read
Maximum sum path in a Matrix Given an n*m matrix, the task is to find the maximum sum of elements of cells starting from the cell (0, 0) to cell (n-1, m-1). However, the allowed moves are right, downwards or diagonally right, i.e, from location (i, j) next move can be (i+1, j), or, (i, j+1), or (i+1, j+1). Find the maximum sum
15+ min read
Paths from entry to exit in matrix and maximum path sum Given a maze which is a N * N grid grid[][]. Every cell of the maze contains either the number 1, 2 or 3 which defines the moves as: If grid[i][j] = 1 then the only valid move is grid[i][j + 1].If grid[i][j] = 2 then the only valid move is grid[i + 1][j].If grid[i][j] = 3 then the valid moves are gr
15 min read
Maximum path sum in matrix Given a matrix of size n * m. Find the maximum path sum in the matrix. The maximum path is the sum of all elements from the first row to the last row where you are allowed to move only down or diagonally to left or right. You can start from any element in the first row.Examples: Input: mat[][] = 10
6 min read
Pair with maximum difference in a Matrix Given a NxM matrix with N rows and M columns of positive integers. The task is to find the pair with the maximum difference in the given matrix. Note: Pairs at positions (a, b) and (b, a) are considered equivalent. Examples: Input : mat[N][M] = {{1, 2, 3, 4}, {25, 6, 7, 8}, {9, 10, 11, 12}, {13, 14,
5 min read