Maximum Sum SubArray using Divide and Conquer | Set 2
Last Updated :
10 Nov, 2021
Given an array arr[] of integers, the task is to find the maximum sum sub-array among all the possible sub-arrays.
Examples:
Input: arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4}
Output: 6
{4, -1, 2, 1} is the required sub-array.
Input: arr[] = {2, 2, -2}
Output: 4
Approach: Till now we are only aware of Kadane's Algorithm which solves this problem in O(n) using dynamic programming.
We had also discussed a divide and conquer approach for maximum sum subarray in O(N*logN) time complexity.
The following approach solves it using Divide and Conquer approach which takes the same time complexity of O(n).
Divide and conquer algorithms generally involves dividing the problem into sub-problems and conquering them separately. For this problem we maintain a structure (in cpp) or class(in java or python) which stores the following values:
- Total sum for a sub-array.
- Maximum prefix sum for a sub-array.
- Maximum suffix sum for a sub-array.
- Overall maximum sum for a sub-array.(This contains the max sum for a sub-array).
During the recursion(Divide part) the array is divided into 2 parts from the middle. The left node structure contains all the above values for the left part of array and the right node structure contains all the above values. Having both the nodes, now we can merge the two nodes by computing all the values for resulting node.
The max prefix sum for the resulting node will be maximum value among the maximum prefix sum of left node or left node sum + max prefix sum of right node or total sum of both the nodes (which is possible for an array with all positive values).
Similarly the max suffix sum for the resulting node will be maximum value among the maximum suffix sum of right node or right node sum + max suffix sum of left node or total sum of both the nodes (which is again possible for an array with all positive values).
The total sum for the resulting node is the sum of both left node and right node sum.
Now, the max subarray sum for the resulting node will be maximum among prefix sum of resulting node, suffix sum of resulting node, total sum of resulting node, maximum sum of left node, maximum sum of right node, sum of maximum suffix sum of left node and maximum prefix sum of right node.
Here the conquer part can be done in O(1) time by combining the result from the left and right node structures.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
struct Node {
// To store the maximum sum
// for a sub-array
long long _max;
// To store the maximum prefix
// sum for a sub-array
long long _pre;
// To store the maximum suffix
// sum for a sub-array
long long _suf;
// To store the total sum
// for a sub-array
long long _sum;
};
// Function to create a node
Node getNode(long long x){
Node a;
a._max = x;
a._pre = x;
a._suf = x;
a._sum = x;
return a;
}
// Function to merge the 2 nodes left and right
Node merg(const Node &l, const Node &r){
// Creating node ans
Node ans ;
// Initializing all the variables:
ans._max = ans._pre = ans._suf = ans._sum = 0;
// The max prefix sum of ans Node is maximum of
// a) max prefix sum of left Node
// b) sum of left Node + max prefix sum of right Node
// c) sum of left Node + sum of right Node
ans._pre = max({l._pre, l._sum+r._pre, l._sum+r._sum});
// The max suffix sum of ans Node is maximum of
// a) max suffix sum of right Node
// b) sum of right Node + max suffix sum of left Node
// c) sum of left Node + sum of right Node
ans._suf = max({r._suf, r._sum+l._suf, l._sum+r._sum});
// Total sum of ans Node = total sum of left Node + total sum of right Node
ans._sum = l._sum + r._sum;
// The max sum of ans Node stores the answer which is the maximum value among:
// prefix sum of ans Node
// suffix sum of ans Node
// maximum value of left Node
// maximum value of right Node
// prefix value of right Node + suffix value of left Node
ans._max = max({ans._pre, ans._suf, ans._sum,l._max, r._max, l._suf+r._pre});
// Return the ans Node
return ans;
}
// Function for calculating the
// max_sum_subArray using divide and conquer
Node getMaxSumSubArray(int l, int r, vector<long long> &ar){
if (l == r) return getNode(ar[l]);
int mid = (l + r) >> 1;
// Call method to return left Node:
Node left = getMaxSumSubArray(l, mid, ar);
// Call method to return right Node:
Node right = getMaxSumSubArray(mid+1, r, ar);
// Return the merged Node:
return merg(left, right);
}
// Driver code
int main(){
vector<long long> ar = {-2, -5, 6, -2, -3, 1, 5, -6};
int n = ar.size();
Node ans = getMaxSumSubArray(0, n-1, ar);
cout << "Answer is " << ans._max << "\n";
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class GFG
{
static class Node
{
// To store the maximum sum
// for a sub-array
int _max;
// To store the maximum prefix
// sum for a sub-array
int _pre;
// To store the maximum suffix
// sum for a sub-array
int _suf;
// To store the total sum
// for a sub-array
int _sum;
};
// Function to create a node
static Node getNode(int x)
{
Node a = new Node();
a._max = x;
a._pre = x;
a._suf = x;
a._sum = x;
return a;
}
// Function to merge the 2 nodes left and right
static Node merg(Node l, Node r)
{
// Creating node ans
Node ans = new Node();
// Initializing all the variables:
ans._max = ans._pre = ans._suf = ans._sum = 0;
// The max prefix sum of ans Node is maximum of
// a) max prefix sum of left Node
// b) sum of left Node + max prefix sum of right Node
// c) sum of left Node + sum of right Node
ans._pre = Arrays.stream(new int[]{l._pre, l._sum+r._pre,
l._sum+r._sum}).max().getAsInt();
// The max suffix sum of ans Node is maximum of
// a) max suffix sum of right Node
// b) sum of right Node + max suffix sum of left Node
// c) sum of left Node + sum of right Node
ans._suf = Arrays.stream(new int[]{r._suf, r._sum+l._suf,
l._sum+r._sum}).max().getAsInt();
// Total sum of ans Node = total sum of
// left Node + total sum of right Node
ans._sum = l._sum + r._sum;
// The max sum of ans Node stores
// the answer which is the maximum value among:
// prefix sum of ans Node
// suffix sum of ans Node
// maximum value of left Node
// maximum value of right Node
// prefix value of right Node + suffix value of left Node
ans._max = Arrays.stream(new int[]{ans._pre,
ans._suf,
ans._sum,
l._max, r._max,
l._suf+r._pre}).max().getAsInt();
// Return the ans Node
return ans;
}
// Function for calculating the
// max_sum_subArray using divide and conquer
static Node getMaxSumSubArray(int l, int r, int []ar)
{
if (l == r) return getNode(ar[l]);
int mid = (l + r) >> 1;
// Call method to return left Node:
Node left = getMaxSumSubArray(l, mid, ar);
// Call method to return right Node:
Node right = getMaxSumSubArray(mid + 1, r, ar);
// Return the merged Node:
return merg(left, right);
}
// Driver code
public static void main(String[] args)
{
int []ar = {-2, -5, 6, -2, -3, 1, 5, -6};
int n = ar.length;
Node ans = getMaxSumSubArray(0, n - 1, ar);
System.out.print("Answer is " + ans._max + "\n");
}
}
// This code is contributed by shikhasingrajput
Python3
# Python3 implementation of the approach
class Node:
def __init__(self, x):
# To store the maximum sum for a sub-array
self._max = x
# To store the maximum prefix sum for a sub-array
self._pre = x
# To store the maximum suffix sum for a sub-array
self._suf = x
# To store the total sum for a sub-array
self._sum = x
# Function to merge the 2 nodes left and right
def merg(l, r):
# Creating node ans
ans = Node(0)
# The max prefix sum of ans Node is maximum of
# a) max prefix sum of left Node
# b) sum of left Node + max prefix sum of right Node
# c) sum of left Node + sum of right Node
ans._pre = max(l._pre, l._sum+r._pre, l._sum+r._sum)
# The max suffix sum of ans Node is maximum of
# a) max suffix sum of right Node
# b) sum of right Node + max suffix sum of left Node
# c) sum of left Node + sum of right Node
ans._suf = max(r._suf, r._sum+l._suf, l._sum+r._sum)
# Total sum of ans Node = total sum of
# left Node + total sum of right Node
ans._sum = l._sum + r._sum
# The max sum of ans Node stores the answer
# which is the maximum value among:
# prefix sum of ans Node
# suffix sum of ans Node
# maximum value of left Node
# maximum value of right Node
# prefix value of left Node + suffix value of right Node
ans._max = max(ans._pre, ans._suf, ans._sum,
l._max, r._max, l._suf+r._pre)
# Return the ans Node
return ans
# Function for calculating the
# max_sum_subArray using divide and conquer
def getMaxSumSubArray(l, r, ar):
if l == r: return Node(ar[l])
mid = (l + r) // 2
# Call method to return left Node:
left = getMaxSumSubArray(l, mid, ar)
# Call method to return right Node:
right = getMaxSumSubArray(mid+1, r, ar)
# Return the merged Node:
return merg(left, right)
# Driver code
if __name__ == "__main__":
ar = [-2, -5, 6, -2, -3, 1, 5, -6]
n = len(ar)
ans = getMaxSumSubArray(0, n-1, ar)
print("Answer is", ans._max)
# This code is contributed by Rituraj Jain
C#
// C# implementation of the approach
using System;
using System.Linq;
public class GFG
{
class Node
{
// To store the maximum sum
// for a sub-array
public int _max;
// To store the maximum prefix
// sum for a sub-array
public int _pre;
// To store the maximum suffix
// sum for a sub-array
public int _suf;
// To store the total sum
// for a sub-array
public int _sum;
};
// Function to create a node
static Node getNode(int x)
{
Node a = new Node();
a._max = x;
a._pre = x;
a._suf = x;
a._sum = x;
return a;
}
// Function to merge the 2 nodes left and right
static Node merg(Node l, Node r)
{
// Creating node ans
Node ans = new Node();
// Initializing all the variables:
ans._max = ans._pre = ans._suf = ans._sum = 0;
// The max prefix sum of ans Node is maximum of
// a) max prefix sum of left Node
// b) sum of left Node + max prefix sum of right Node
// c) sum of left Node + sum of right Node
ans._pre = (new int[]{l._pre, l._sum+r._pre,
l._sum+r._sum}).Max();
// The max suffix sum of ans Node is maximum of
// a) max suffix sum of right Node
// b) sum of right Node + max suffix sum of left Node
// c) sum of left Node + sum of right Node
ans._suf = (new int[]{r._suf, r._sum+l._suf,
l._sum+r._sum}).Max();
// Total sum of ans Node = total sum of
// left Node + total sum of right Node
ans._sum = l._sum + r._sum;
// The max sum of ans Node stores
// the answer which is the maximum value among:
// prefix sum of ans Node
// suffix sum of ans Node
// maximum value of left Node
// maximum value of right Node
// prefix value of right Node + suffix value of left Node
ans._max = (new int[]{ans._pre,
ans._suf,
ans._sum,
l._max, r._max,
l._suf+r._pre}).Max();
// Return the ans Node
return ans;
}
// Function for calculating the
// max_sum_subArray using divide and conquer
static Node getMaxSumSubArray(int l, int r, int []ar)
{
if (l == r) return getNode(ar[l]);
int mid = (l + r) >> 1;
// Call method to return left Node:
Node left = getMaxSumSubArray(l, mid, ar);
// Call method to return right Node:
Node right = getMaxSumSubArray(mid + 1, r, ar);
// Return the merged Node:
return merg(left, right);
}
// Driver code
public static void Main(String[] args)
{
int []ar = {-2, -5, 6, -2, -3, 1, 5, -6};
int n = ar.Length;
Node ans = getMaxSumSubArray(0, n - 1, ar);
Console.Write("Answer is " + ans._max + "\n");
}
}
// This code is contributed by shikhasingrajput
JavaScript
<script>
// Javascript implementation of the approach
class Node {
constructor()
{
// To store the maximum sum
// for a sub-array
var _max;
// To store the maximum prefix
// sum for a sub-array
var _pre;
// To store the maximum suffix
// sum for a sub-array
var _suf;
// To store the total sum
// for a sub-array
var _sum;
}
};
// Function to create a node
function getNode(x){
var a = new Node();
a._max = x;
a._pre = x;
a._suf = x;
a._sum = x;
return a;
}
// Function to merge the 2 nodes left and right
function merg(l, r){
// Creating node ans
var ans = new Node();
// Initializing all the variables:
ans._max = ans._pre = ans._suf = ans._sum = 0;
// The max prefix sum of ans Node is maximum of
// a) max prefix sum of left Node
// b) sum of left Node + max prefix sum of right Node
// c) sum of left Node + sum of right Node
ans._pre = Math.max(l._pre, l._sum+r._pre, l._sum+r._sum);
// The max suffix sum of ans Node is maximum of
// a) max suffix sum of right Node
// b) sum of right Node + max suffix sum of left Node
// c) sum of left Node + sum of right Node
ans._suf = Math.max(r._suf, r._sum+l._suf, l._sum+r._sum);
// Total sum of ans Node = total sum of left Node + total sum of right Node
ans._sum = l._sum + r._sum;
// The max sum of ans Node stores the answer which is the maximum value among:
// prefix sum of ans Node
// suffix sum of ans Node
// maximum value of left Node
// maximum value of right Node
// prefix value of right Node + suffix value of left Node
ans._max = Math.max(ans._pre, ans._suf, ans._sum,l._max, r._max, l._suf+r._pre);
// Return the ans Node
return ans;
}
// Function for calculating the
// max_sum_subArray using divide and conquer
function getMaxSumSubArray(l, r, ar){
if (l == r) return getNode(ar[l]);
var mid = (l + r) >> 1;
// Call method to return left Node:
var left = getMaxSumSubArray(l, mid, ar);
// Call method to return right Node:
var right = getMaxSumSubArray(mid+1, r, ar);
// Return the merged Node:
return merg(left, right);
}
// Driver code
var ar = [-2, -5, 6, -2, -3, 1, 5, -6];
var n = ar.length;
var ans = getMaxSumSubArray(0, n-1, ar);
document.write("Answer is " + ans._max + "<br>");
// This code is contributed by rutvik_56.
</script>
Output:
Answer is 7
Time Complexity: The getMaxSumSubArray() recursive function generates the following recurrence relation.
T(n) = 2 * T(n / 2) + O(1) note that conquer part takes only O(1) time. So on solving this recurrence using Master's Theorem we get the time complexity of O(n).
Similar Reads
Longest unique subarray of an Array with maximum sum in another Array
Given two arrays X[] and Y[] of size N, the task is to find the longest subarray in X[] containing only unique values such that a subarray with similar indices in Y[] should have a maximum sum. The value of array elements is in the range [0, 1000]. Examples: Input: N = 5, X[] = {0, 1, 2, 0, 2}, Y[]
10 min read
Maximum of XOR of first and second maximum of all subarrays
Given an array arr[] of distinct elements, the task is to find the maximum of XOR value of the first and second maximum elements of every possible subarray.Note: Length of the Array is greater than 1. Examples: Input: arr[] = {5, 4, 3} Output: 7 Explanation: All Possible subarrays with length greate
11 min read
Maximum OR value of a pair in an Array | Set 2
Given an array arr[] of N positive elements, the task is to find the maximum bitwise OR value of a pair from the given array.Examples: Input: arr[] = {3, 6, 8, 16} Output: 24 Explanation: The pair giving maximum OR value is (8, 16) 8|16 = 24Input: arr[] = {8, 7, 3, 12} Output: 15 Explanation: There
5 min read
C++ Program to Maximize elements using another array
Given two arrays with size n, maximize the first array by using the elements from the second array such that the new array formed contains n greatest but unique elements of both the arrays giving the second array priority (All elements of second array appear before first array). The order of appeara
4 min read
Maximum length of subarray such that sum of the subarray is even
Given an array of N elements. The task is to find the length of the longest subarray such that sum of the subarray is even.Examples: Input : N = 6, arr[] = {1, 2, 3, 2, 1, 4}Output : 5Explanation: In the example the subarray in range [2, 6] has sum 12 which is even, so the length is 5.Input : N = 4,
11 min read
Maximum OR value of a pair in an Array without using OR operator
Given an array arr[] containing N positive integers, the task is to find the maximum bitwise OR value of a pair in the given array without using the Bitwise OR operator.Examples: Input: arr[] = {3, 6, 8, 16} Output: 24 Explanation: The pair giving maximum OR value is (8, 16) => 8|16 = 24Input: ar
6 min read
Maximum length sub-array which satisfies the given conditions
Given an array arr[] of N integers, the task is to find the maximum length of any sub-array of arr[] which satisfies one of the given conditions: The subarray is strictly increasing.The subarray is strictly decreasing.The subarray is first strictly increasing then strictly decreasing. Examples: Inpu
9 min read
Sum of Max of Subarrays
Given an array arr[], the task is to find the sum of the maximum elements of every possible non-empty sub-arrays of the given array arr[].Examples: Input: arr[] = [1, 3, 2]Output: 15Explanation: All possible non-empty subarrays of [1, 3, 2] are {1}, {3}, {2}, {1, 3}, {3, 2} and {1, 3, 2}. The maximu
12 min read
Minimize the maximum element of N subarrays of size K
Given an array arr[] and two integers N and K, the task is to choose non-overlapping N subarrays of size K such that the maximum element of all subarrays is minimum.Note: If it is not possible to choose N such subarrays then return -1. Examples: Input: arr[] = {1, 10, 3, 10, 2}, N = 3, K = 1 Output:
8 min read
Length of longest subarray for each index in Array where element at that index is largest
Given an array arr[] of size N, the task is to calculate, for i(0<=i<N), the maximum length of a subarray containing arr[i], where arr[i] is the maximum element. Example: Input : arr[ ] = {62, 97, 49, 59, 54, 92, 21}, N=7Output: 1 7 1 3 1 5 1Explanation: The maximum length of subarray in which
15 min read