Maximum triplet sum in array
Last Updated :
05 Nov, 2021
Given an array, the task is to find the maximum triplet sum in the array.
Examples :
Input : arr[] = {1, 2, 3, 0, -1, 8, 10}
Output : 21
10 + 8 + 3 = 21
Input : arr[] = {9, 8, 20, 3, 4, -1, 0}
Output : 37
20 + 9 + 8 = 37
Naive approach: In this method, we simply run three-loop and one by one add three-element and compare with the previous sum if the sum of three-element is greater than store in the previous sum.
C++
// C++ code to find maximum triplet sum
#include <bits/stdc++.h>
using namespace std;
int maxTripletSum(int arr[], int n)
{
// Initialize sum with INT_MIN
int sum = INT_MIN;
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
for (int k = j + 1; k < n; k++)
if (sum < arr[i] + arr[j] + arr[k])
sum = arr[i] + arr[j] + arr[k];
return sum;
}
// Driven code
int main()
{
int arr[] = { 1, 0, 8, 6, 4, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << maxTripletSum(arr, n);
return 0;
}
Java
// Java code to find maximum triplet sum
import java.io.*;
class GFG {
static int maxTripletSum(int arr[], int n)
{
// Initialize sum with INT_MIN
int sum = -1000000;
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
for (int k = j + 1; k < n; k++)
if (sum < arr[i] + arr[j] + arr[k])
sum = arr[i] + arr[j] + arr[k];
return sum;
}
// Driven code
public static void main(String args[])
{
int arr[] = { 1, 0, 8, 6, 4, 2 };
int n = arr.length;
System.out.println(maxTripletSum(arr, n));
}
}
// This code is contributed by Nikita Tiwari.
Python3
# Python 3 code to find
# maximum triplet sum
def maxTripletSum(arr, n) :
# Initialize sum with
# INT_MIN
sm = -1000000
for i in range(0, n) :
for j in range(i + 1, n) :
for k in range(j + 1, n) :
if (sm < (arr[i] + arr[j] + arr[k])) :
sm = arr[i] + arr[j] + arr[k]
return sm
# Driven code
arr = [ 1, 0, 8, 6, 4, 2 ]
n = len(arr)
print(maxTripletSum(arr, n))
# This code is contributed by Nikita Tiwari.
C#
// C# code to find maximum triplet sum
using System;
class GFG {
static int maxTripletSum(int[] arr, int n)
{
// Initialize sum with INT_MIN
int sum = -1000000;
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
for (int k = j + 1; k < n; k++)
if (sum < arr[i] + arr[j] + arr[k])
sum = arr[i] + arr[j] + arr[k];
return sum;
}
// Driven code
public static void Main()
{
int[] arr = { 1, 0, 8, 6, 4, 2 };
int n = arr.Length;
Console.WriteLine(maxTripletSum(arr, n));
}
}
// This code is contributed by vt_m.
PHP
<?php
// PHP code to find maximum triplet sum
function maxTripletSum( $arr, $n)
{
// Initialize sum with INT_MIN
$sum = PHP_INT_MIN;
for($i = 0; $i < $n; $i++)
for($j = $i + 1; $j < $n; $j++)
for($k = $j + 1; $k < $n; $k++)
if ($sum < $arr[$i] +
$arr[$j] +
$arr[$k])
$sum = $arr[$i] +
$arr[$j] +
$arr[$k];
return $sum;
}
// Driver Code
$arr = array(1, 0, 8, 6, 4, 2);
$n = count($arr);
echo maxTripletSum($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// JavaScript Program to find maximum triplet sum
function maxTripletSum(arr, n)
{
// Initialize sum with INT_MIN
let sum = -1000000;
for (let i = 0; i < n; i++)
for (let j = i + 1; j < n; j++)
for (let k = j + 1; k < n; k++)
if (sum < arr[i] + arr[j] + arr[k])
sum = arr[i] + arr[j] + arr[k];
return sum;
}
// Driver code
let arr = [ 1, 0, 8, 6, 4, 2 ];
let n = arr.length;
document.write(maxTripletSum(arr, n));
</script>
// This code is contributed by sanjoy_62.
Output:
18
Time complexity : O(n^3)
Space complexity : O(1)
Another approach: In this, we first need to sort the whole array and after that when we add the last three-element of the array then we find the maximum sum of triplets.
C++
// C++ code to find maximum triplet sum
#include <bits/stdc++.h>
using namespace std;
// This function assumes that there are at least
// three elements in arr[].
int maxTripletSum(int arr[], int n)
{
// sort the given array
sort(arr, arr + n);
// After sorting the array.
// Add last three element of the given array
return arr[n - 1] + arr[n - 2] + arr[n - 3];
}
// Driven code
int main()
{
int arr[] = { 1, 0, 8, 6, 4, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << maxTripletSum(arr, n);
return 0;
}
Java
// Java code to find maximum triplet sum
import java.io.*;
import java.util.*;
class GFG {
// This function assumes that there are
// at least three elements in arr[].
static int maxTripletSum(int arr[], int n)
{
// sort the given array
Arrays.sort(arr);
// After sorting the array.
// Add last three element
// of the given array
return arr[n - 1] + arr[n - 2] + arr[n - 3];
}
// Driven code
public static void main(String args[])
{
int arr[] = { 1, 0, 8, 6, 4, 2 };
int n = arr.length;
System.out.println(maxTripletSum(arr, n));
}
}
// This code is contributed by Nikita Tiwari.
Python3
# Python 3 code to find
# maximum triplet sum
# This function assumes
# that there are at least
# three elements in arr[].
def maxTripletSum(arr, n) :
# sort the given array
arr.sort()
# After sorting the array.
# Add last three element
# of the given array
return (arr[n - 1] + arr[n - 2] + arr[n - 3])
# Driven code
arr = [ 1, 0, 8, 6, 4, 2 ]
n = len(arr)
print(maxTripletSum(arr, n))
# This code is contributed by Nikita Tiwari.
C#
// C# code to find maximum triplet sum
using System;
class GFG {
// This function assumes that there are
// at least three elements in arr[].
static int maxTripletSum(int[] arr, int n)
{
// sort the given array
Array.Sort(arr);
// After sorting the array.
// Add last three element
// of the given array
return arr[n - 1] + arr[n - 2] + arr[n - 3];
}
// Driven code
public static void Main()
{
int[] arr = { 1, 0, 8, 6, 4, 2 };
int n = arr.Length;
Console.WriteLine(maxTripletSum(arr, n));
}
}
// This code is contributed by vt_m.
PHP
<?php
// PHP code to find
// maximum triplet sum
// This function assumes that
// there are at least
// three elements in arr[].
function maxTripletSum( $arr, $n)
{
// sort the given array
sort($arr);
// After sorting the array.
// Add last three element
// of the given array
return $arr[$n - 1] + $arr[$n - 2] +
$arr[$n - 3];
}
// Driver code
$arr = array( 1, 0, 8, 6, 4, 2 );
$n = count($arr);
echo maxTripletSum($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
//Javascript code to find maximum triplet sum
// This function assumes that there are at least
// three elements in arr[].
function maxTripletSum(arr, n)
{
// sort the given array
arr.sort();
// After sorting the array.
// Add last three element of the given array
return arr[n - 1] + arr[n - 2] + arr[n - 3];
}
// Driven code
let arr = [ 1, 0, 8, 6, 4, 2 ];
let n = arr.length;
document.write(maxTripletSum(arr, n));
// This code is contributed by Mayank Tyagi
</script>
Output:
18
Time complexity: O(nlogn)
Space complexity: O(1)
Efficient approach: Scan the array and compute the Maximum, second maximum, and third maximum element present in the array and return the sum of its and it would be maximum sum.
C++
// C++ code to find maximum triplet sum
#include <bits/stdc++.h>
using namespace std;
// This function assumes that there are at least
// three elements in arr[].
int maxTripletSum(int arr[], int n)
{
// Initialize Maximum, second maximum and third
// maximum element
int maxA = INT_MIN, maxB = INT_MIN, maxC = INT_MIN;
for (int i = 0; i < n; i++) {
// Update Maximum, second maximum and third
// maximum element
if (arr[i] > maxA) {
maxC = maxB;
maxB = maxA;
maxA = arr[i];
}
// Update second maximum and third maximum
// element
else if (arr[i] > maxB) {
maxC = maxB;
maxB = arr[i];
}
// Update third maximum element
else if (arr[i] > maxC)
maxC = arr[i];
}
return (maxA + maxB + maxC);
}
// Driven code
int main()
{
int arr[] = { 1, 0, 8, 6, 4, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << maxTripletSum(arr, n);
return 0;
}
Java
// Java code to find maximum triplet sum
import java.io.*;
import java.util.*;
class GFG {
// This function assumes that there
// are at least three elements in arr[].
static int maxTripletSum(int arr[], int n)
{
// Initialize Maximum, second maximum and third
// maximum element
int maxA = -100000000, maxB = -100000000;
int maxC = -100000000;
for (int i = 0; i < n; i++) {
// Update Maximum, second maximum
// and third maximum element
if (arr[i] > maxA)
{
maxC = maxB;
maxB = maxA;
maxA = arr[i];
}
// Update second maximum and third maximum
// element
else if (arr[i] > maxB)
{
maxC = maxB;
maxB = arr[i];
}
// Update third maximum element
else if (arr[i] > maxC)
maxC = arr[i];
}
return (maxA + maxB + maxC);
}
// Driven code
public static void main(String args[])
{
int arr[] = { 1, 0, 8, 6, 4, 2 };
int n = arr.length;
System.out.println(maxTripletSum(arr, n));
}
}
// This code is contributed by Nikita Tiwari.
Python3
# Python 3 code to find
# maximum triplet sum
# This function assumes
# that there are at least
# three elements in arr[].
def maxTripletSum(arr, n) :
# Initialize Maximum, second
# maximum and third maximum
# element
maxA = -100000000
maxB = -100000000
maxC = -100000000
for i in range(0, n) :
# Update Maximum, second maximum
# and third maximum element
if (arr[i] > maxA) :
maxC = maxB
maxB = maxA
maxA = arr[i]
# Update second maximum and
# third maximum element
elif (arr[i] > maxB) :
maxC = maxB
maxB = arr[i]
# Update third maximum element
elif (arr[i] > maxC) :
maxC = arr[i]
return (maxA + maxB + maxC)
# Driven code
arr = [ 1, 0, 8, 6, 4, 2 ]
n = len(arr)
print(maxTripletSum(arr, n))
# This code is contributed by Nikita Tiwari.
C#
// C# code to find maximum triplet sum
using System;
class GFG {
// This function assumes that there
// are at least three elements in arr[].
static int maxTripletSum(int[] arr, int n)
{
// Initialize Maximum, second maximum
// and third maximum element
int maxA = -100000000, maxB = -100000000;
int maxC = -100000000;
for (int i = 0; i < n; i++) {
// Update Maximum, second maximum
// and third maximum element
if (arr[i] > maxA) {
maxC = maxB;
maxB = maxA;
maxA = arr[i];
}
// Update second maximum and third
// maximum element
else if (arr[i] > maxB) {
maxC = maxB;
maxB = arr[i];
}
// Update third maximum element
else if (arr[i] > maxC)
maxC = arr[i];
}
return (maxA + maxB + maxC);
}
// Driven code
public static void Main()
{
int[] arr = { 1, 0, 8, 6, 4, 2 };
int n = arr.Length;
Console.WriteLine(maxTripletSum(arr, n));
}
}
// This code is contributed by vt_m.
PHP
<?php
// PHP code to find
// maximum triplet sum
// This function assumes that
// there are at least three
// elements in arr[].
function maxTripletSum($arr, $n)
{
// Initialize Maximum,
// second maximum and
// third maximum element
$maxA = PHP_INT_MIN;
$maxB = PHP_INT_MIN;
$maxC = PHP_INT_MIN;
for ( $i = 0; $i < $n; $i++)
{
// Update Maximum,
// second maximum and
// third maximum element
if ($arr[$i] > $maxA)
{
$maxC = $maxB;
$maxB = $maxA;
$maxA = $arr[$i];
}
// Update second maximum and
// third maximum element
else if ($arr[$i] > $maxB)
{
$maxC = $maxB;
$maxB = $arr[$i];
}
// Update third maximum element
else if ($arr[$i] > $maxC)
$maxC = $arr[$i];
}
return ($maxA + $maxB + $maxC);
}
// Driven code
$arr = array( 1, 0, 8, 6, 4, 2 );
$n = count($arr);
echo maxTripletSum($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// JavaScript code to find maximum triplet sum
// This function assumes that there are at least
// three elements in arr[].
function maxTripletSum(arr, n)
{
// Initialize Maximum, second maximum and third
// maximum element
let maxA = Number.MIN_SAFE_INTEGER;
let maxB = Number.MIN_SAFE_INTEGER;
let maxC = Number.MIN_SAFE_INTEGER;
for (let i = 0; i < n; i++) {
// Update Maximum, second maximum and third
// maximum element
if (arr[i] > maxA) {
maxC = maxB;
maxB = maxA;
maxA = arr[i];
}
// Update second maximum and third maximum
// element
else if (arr[i] > maxB) {
maxC = maxB;
maxB = arr[i];
}
// Update third maximum element
else if (arr[i] > maxC)
maxC = arr[i];
}
return (maxA + maxB + maxC);
}
// Driven code
let arr = [ 1, 0, 8, 6, 4, 2 ];
let n = arr.length;
document.write(maxTripletSum(arr, n));
// This code is contributed by Surbhi Tyagi.
</script>
Output:
18
Time complexity : O(n)
Space complexity : O(1)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
SQL Commands | DDL, DQL, DML, DCL and TCL Commands SQL commands are crucial for managing databases effectively. These commands are divided into categories such as Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), Data Query Language (DQL), and Transaction Control Language (TCL). In this article, we will e
7 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read