Open In App

Mth bit in Nth binary string from a sequence generated by the given operations

Last Updated : 24 Mar, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two integers N and M, generate a sequence of N binary strings by the following steps:

  • S0 = "0"
  • S1 = "1"
  • Generate remaining strings by the equation Si = reverse(Si - 2) + reverse(Si - 1)

The task is to find the Mth set bit in the Nth string.

Examples:

Input: N = 4, M = 3
Output: 0
Explanation:
S0 ="0"
S1 ="1"
S2 ="01"
S3 ="110"
S4 ="10011"
Therefore, the 3rd bit in S4 is '0'

Input: N = 5, M = 2
Output: 1

Naive Approach: The simplest approach is to generate S2 to SN - 1 and traverse the string SN - 1 to find the Mth bit. 

Time Complexity: O(N * 2N) 
Auxiliary Space: O(N)

Efficient Approach: Follow the steps below to optimize the above approach:

  • Compute and store the first N Fibonacci numbers in an array, say fib[]
  • Now, search for the Mth bit in the Nth string.
  • If N > 1 : Considering SN to be the concatenation of reverse of string SN - 2 and reverse of string SN - 1, the length of the string SN - 2 is equal to fib[N - 2] and length of the string SN - 1 is equal to fib[N - 1]
    • If M ? fib[n-2]: It signifies that M lies in SN - 2, therefore, recursively search for the (fib[N - 2] + 1 - M)th bit of the string SN - 2.
    • If M > fib[N - 2]: It signifies that M lies in SN - 1, therefore, recursively search for the (fib[N - 1]+ 1 - (M - fib[N - 2]))th bit of SN - 1.
  • If N ? 1: return N.

Below is the implementation of the above approach:

C++
// C++ program for above approach

#include <bits/stdc++.h>
using namespace std;
#define maxN 10

// Function to calculate N
// Fibonacci numbers
void calculateFib(int fib[], int n)
{
    fib[0] = fib[1] = 1;
    for (int x = 2; x < n; x++) {
        fib[x] = fib[x - 1] + fib[x - 2];
    }
}

// Function to find the mth bit
// in the string Sn
int find_mth_bit(int n, int m, int fib[])
{
    // Base case
    if (n <= 1) {
        return n;
    }

    // Length of left half
    int len_left = fib[n - 2];

    // Length of the right half
    int len_right = fib[n - 1];

    if (m <= len_left) {

        // Recursive check in the left half
        return find_mth_bit(n - 2,
                            len_left + 1 - m, fib);
    }
    else {
        // Recursive check in the right half
        return find_mth_bit(
            n - 1, len_right + 1
                       - (m - len_left),
            fib);
    }
}

void find_mth_bitUtil(int n, int m)
{

    int fib[maxN];
    calculateFib(fib, maxN);
    int ans = find_mth_bit(n, m, fib);
    cout << ans << ' ';
}

// Driver Code
int main()
{

    int n = 5, m = 3;
    find_mth_bitUtil(n, m);
    return 0;
}
Java
// Java program for 
// the above approach
import java.util.*;
class GFG{

static final int maxN = 10;

// Function to calculate N
// Fibonacci numbers
static void calculateFib(int fib[], 
                         int n)
{
  fib[0] = fib[1] = 1;
  
  for (int x = 2; x < n; x++) 
  {
    fib[x] = fib[x - 1] + 
             fib[x - 2];
  }
}

// Function to find the mth bit
// in the String Sn
static int find_mth_bit(int n, 
                        int m, 
                        int fib[])
{
  // Base case
  if (n <= 1) 
  {
    return n;
  }

  // Length of left half
  int len_left = fib[n - 2];

  // Length of the right half
  int len_right = fib[n - 1];

  if (m <= len_left) 
  {
    // Recursive check in 
    // the left half
    return find_mth_bit(n - 2,
                        len_left + 
                        1 - m, fib);
  }
  else 
  {
    // Recursive check in 
    // the right half
    return find_mth_bit(n - 1, 
                        len_right + 
                        1 - (m - 
                        len_left), fib);
  }
}

static void find_mth_bitUtil(int n, int m)
{
  int []fib = new int[maxN];
  calculateFib(fib, maxN);
  int ans = find_mth_bit(n, m, fib);
  System.out.print(ans + " ");
}

// Driver Code
public static void main(String[] args)
{
  int n = 5, m = 3;
  find_mth_bitUtil(n, m);
}
}

// This code is contributed by 29AjayKumar 
Python3
# Python3 program for above approach
maxN = 10

# Function to calculate N
# Fibonacci numbers
def calculateFib(fib, n):
    
    fib[0] = fib[1] = 1
    for x in range(2, n):
        fib[x] = (fib[x - 1] + 
                  fib[x - 2])

# Function to find the mth bit
# in the string Sn
def find_mth_bit(n, m, fib):
    
    # Base case
    if (n <= 1):
        return n

    # Length of left half
    len_left = fib[n - 2]

    # Length of the right half
    len_right = fib[n - 1]

    if (m <= len_left):
        
        # Recursive check in the left half
        return find_mth_bit(n - 2, 
                 len_left + 1 - m, fib)
    else:
        
        # Recursive check in the right half
        return find_mth_bit(n - 1, 
                    len_right + 1 - 
                    (m - len_left), fib)

def find_mth_bitUtil(n, m):

    fib = [0 for i in range(maxN)]
    calculateFib(fib, maxN)
    
    ans = find_mth_bit(n, m, fib)
    
    print(ans)

# Driver Code
if __name__ == '__main__':

    n = 5
    m = 3
    
    find_mth_bitUtil(n, m)

# This code is contributed by mohit kumar 29
C#
// C# program for 
// the above approach
using System;
class GFG{

static int maxN = 10;

// Function to calculate N
// Fibonacci numbers
static void calculateFib(int []fib , 
                         int n)
{
  fib[0] = fib[1] = 1;
  
  for (int x = 2; x < n; x++) 
  {
    fib[x] = fib[x - 1] + 
             fib[x - 2];
  }
}

// Function to find the mth bit
// in the String Sn
static int find_mth_bit(int n, 
                        int m, 
                        int []fib)
{
  // Base case
  if (n <= 1) 
  {
    return n;
  }

  // Length of left half
  int len_left = fib[n - 2];

  // Length of the right half
  int len_right = fib[n - 1];

  if (m <= len_left) 
  {
    // Recursive check in 
    // the left half
    return find_mth_bit(n - 2,
                        len_left + 
                        1 - m, fib);
  }
  else 
  {
    // Recursive check in 
    // the right half
    return find_mth_bit(n - 1, 
                        len_right + 
                        1 - (m - 
                        len_left), fib);
  }
}

static void find_mth_bitUtil(int n, 
                             int m)
{
  int []fib = new int[maxN];
  calculateFib(fib, maxN);
  int ans = find_mth_bit(n, m, fib);
  Console.Write(ans + " ");
}

// Driver Code
public static void Main()
{
  int n = 5, m = 3;
  find_mth_bitUtil(n, m);
}
}

// This code is contributed by Chitranayal
JavaScript
<script>
// JavaScript program for above approach

const maxN = 10

// Function to calculate N
// Fibonacci numbers
function calculateFib(fib, n)
{
    fib[0] = fib[1] = 1;
    for (let x = 2; x < n; x++) {
        fib[x] = fib[x - 1] + fib[x - 2];
    }
}

// Function to find the mth bit
// in the string Sn
function find_mth_bit(n, m, fib)
{
    // Base case
    if (n <= 1) {
        return n;
    }

    // Length of left half
    let len_left = fib[n - 2];

    // Length of the right half
    let len_right = fib[n - 1];

    if (m <= len_left) {

        // Recursive check in the left half
        return find_mth_bit(n - 2,
                            len_left + 1 - m, fib);
    }
    else {
        // Recursive check in the right half
        return find_mth_bit(
            n - 1, len_right + 1
                    - (m - len_left),
            fib);
    }
}

function find_mth_bitUtil(n, m)
{

    let fib = new Array(maxN);
    calculateFib(fib, maxN);
    let ans = find_mth_bit(n, m, fib);
    document.write(ans + " ");
}

// Driver Code

    let n = 5, m = 3;
    find_mth_bitUtil(n, m);


// This code is contributed by Surbhi Tyagi.

</script>

Output: 
1

 

Time Complexity: O(N)
Auxiliary Space: O(N)


Next Article

Similar Reads