Numbers of pairs from an array whose average is also present in the array
Last Updated :
23 Jul, 2025
Given an array arr[] consisting of N integers, the task is to count the number of distinct pairs (arr[i], arr[j]) in the array such that the average of pairs is also present in the array.
Note: Consider (arr[i], arr[j]) and (arr[j], arr[i]) as the same pairs.
Examples:
Input: arr[] = {2, 1, 3}
Output: 1
Explanation: The only one pair whose average is present in the given array is (1, 3) (Average = 2).
Input: arr[] = {4, 2, 5, 1, 3, 5}
Output: 7
Naive Approach: Follow the steps below to solve the problem:
- Initialize a variable, say count as 0 to store all the count of pairs whose average exists in the array.
- Insert all the array elements in an set S.
- Traverse over the set S and for every element in the set S, generate all possible pairs of the given array and if the sum of any pairs is same as the current element in the set then increment the value of count by 1.
- After completing the above steps, print the value of count as the resultant count of pairs.
Below is the implementation of the above approach :
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to count the number of
// pairs from the array having sum S
int getCountPairs(vector<int> arr, int N, int S)
{
// Stores the total count of
// pairs whose sum is 2*S
int count = 0;
// Generate all possible pairs
// and check their sums
for(int i = 0; i < arr.size(); i++)
{
for(int j = i + 1; j < arr.size(); j++)
{
// If the sum is S, then
// increment the count
if ((arr[i] + arr[j]) == S)
count++;
}
}
// Return the total
// count of pairs
return count;
}
// Function to count of pairs having
// whose average exists in the array
int countPairs(vector<int> arr, int N)
{
// Initialize the count
int count = 0;
// Use set to remove duplicates
unordered_set<int> S;
// Add elements in the set
for(int i = 0; i < N; i++)
S.insert(arr[i]);
for(int ele : S)
{
int sum = 2 * ele;
// For every sum, count
// all possible pairs
count += getCountPairs(arr, N, sum);
}
// Return the total count
return count;
}
// Driver Code
int main()
{
vector<int> arr = { 4, 2, 5, 1, 3, 5 };
int N = arr.size();
cout << countPairs(arr, N);
return 0;
}
// This code is contributed by Kingash
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG {
// Function to count the number of
// pairs from the array having sum S
public static int getCountPairs(
int arr[], int N, int S)
{
// Stores the total count of
// pairs whose sum is 2*S
int count = 0;
// Generate all possible pairs
// and check their sums
for (int i = 0;
i < arr.length; i++) {
for (int j = i + 1;
j < arr.length; j++) {
// If the sum is S, then
// increment the count
if ((arr[i] + arr[j]) == S)
count++;
}
}
// Return the total
// count of pairs
return count;
}
// Function to count of pairs having
// whose average exists in the array
public static int countPairs(
int arr[], int N)
{
// Initialize the count
int count = 0;
// Use set to remove duplicates
HashSet<Integer> S = new HashSet<>();
// Add elements in the set
for (int i = 0; i < N; i++)
S.add(arr[i]);
for (int ele : S) {
int sum = 2 * ele;
// For every sum, count
// all possible pairs
count += getCountPairs(
arr, N, sum);
}
// Return the total count
return count;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 4, 2, 5, 1, 3, 5 };
int N = arr.length;
System.out.print(
countPairs(arr, N));
}
}
Python3
# Python3 program for the above approach
# Function to count the number of
# pairs from the array having sum S
def getCountPairs(arr, N, S):
# Stores the total count of
# pairs whose sum is 2*S
count = 0
# Generate all possible pairs
# and check their sums
for i in range(len(arr)):
for j in range(i + 1, len(arr)):
# If the sum is S, then
# increment the count
if ((arr[i] + arr[j]) == S):
count += 1
# Return the total
# count of pairs
return count
# Function to count of pairs having
# whose average exists in the array
def countPairs(arr, N):
# Initialize the count
count = 0
# Use set to remove duplicates
S = set([])
# Add elements in the set
for i in range(N):
S.add(arr[i])
for ele in S:
sum = 2 * ele
# For every sum, count
# all possible pairs
count += getCountPairs(arr, N, sum)
# Return the total count
return count
# Driver Code
if __name__ == "__main__":
arr = [ 4, 2, 5, 1, 3, 5 ]
N = len(arr)
print(countPairs(arr, N))
# This code is contributed by ukasp
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG
{
// Function to count the number of
// pairs from the array having sum S
public static int getCountPairs(
int []arr, int N, int S)
{
// Stores the total count of
// pairs whose sum is 2*S
int count = 0;
// Generate all possible pairs
// and check their sums
for (int i = 0;
i < arr.Length; i++) {
for (int j = i + 1;
j < arr.Length; j++) {
// If the sum is S, then
// increment the count
if ((arr[i] + arr[j]) == S)
count++;
}
}
// Return the total
// count of pairs
return count;
}
// Function to count of pairs having
// whose average exists in the array
public static int countPairs(
int []arr, int N)
{
// Initialize the count
int count = 0;
// Use set to remove duplicates
HashSet<int> S = new HashSet<int>();
// Add elements in the set
for (int i = 0; i < N; i++)
S.Add(arr[i]);
foreach (int ele in S) {
int sum = 2 * ele;
// For every sum, count
// all possible pairs
count += getCountPairs(
arr, N, sum);
}
// Return the total count
return count;
}
// Driver Code
public static void Main(String[] args)
{
int []arr = { 4, 2, 5, 1, 3, 5 };
int N = arr.Length;
Console.Write(
countPairs(arr, N));
}
}
// This code is contributed by Princi Singh
JavaScript
<script>
// JavaScript program for the above approach
// Function to count the number of
// pairs from the array having sum S
function getCountPairs(
arr, N, S)
{
// Stores the total count of
// pairs whose sum is 2*S
let count = 0;
// Generate all possible pairs
// and check their sums
for (let i = 0;
i < arr.length; i++) {
for (let j = i + 1;
j < arr.length; j++) {
// If the sum is S, then
// increment the count
if ((arr[i] + arr[j]) == S)
count++;
}
}
// Return the total
// count of pairs
return count;
}
// Function to count of pairs having
// whose average exists in the array
function countPairs(arr, N)
{
// Initialize the count
let count = 0;
// Use set to remove duplicates
let S = [];
// Add elements in the set
for (let i = 0; i < N; i++)
S.push(arr[i]);
for (let ele in S) {
let sum = 2 * ele;
// For every sum, count
// all possible pairs
count += getCountPairs(
arr, N, sum);
}
// Return the total count
return count;
}
// Driver code
let arr = [ 4, 2, 5, 1, 3, 5 ];
let N = arr.length;
document.write(
countPairs(arr, N));
// This code is contributed by code_hunt.
</script>
Time Complexity: O(N3)
Auxiliary Space: O(N)
Efficient Approach: The above approach can also be optimized by storing the frequency of the sum of all possible pairs in the given array in a HashMap and find the count for each element of the array accordingly. Follow the steps below to solve the problem:
- Initialize a variable, say count as 0 to store all the count of pairs whose average exists in the array.
- Insert all the array elements in an set S.
- Initialize a HashMap, say M that stores the frequency of the sum of all possible pairs in the given array.
- Traverse over the set S and for every element(say X) in the set S update the value of count by the value (M[X]/2).
- After completing the above steps, print the value of count as the resultant count of pairs.
Below is the implementation of the above approach:
C++
// CPP program for the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to count the total count
// of pairs having sum S
int getCountPairs(int arr[],
int N, int S)
{
map<int,int> mp;
// Store the total count of all
// elements in map mp
for (int i = 0; i < N; i++) {
mp[arr[i]]++;
}
// Stores the total count of
// total pairs
int twice_count = 0;
// Iterate through each element
// and increment the count
for (int i = 0; i < N; i++) {
// If the value (S - arr[i])
// exists in the map hm
if (mp.find(S - arr[i]) != mp.end()) {
// Update the twice count
twice_count += mp[S - arr[i]];
}
if (S - arr[i] == arr[i])
twice_count--;
}
// Return the half of twice_count
return twice_count / 2;
}
// Function to count of pairs having
// whose average exists in the array
int countPairs(
int arr[], int N)
{
// Stores the total count of
// pairs
int count = 0;
// Use set to remove duplicates
set<int> S;
// Insert all the element in
// the set S
for (int i = 0; i < N; i++)
S.insert(arr[i]);
for (int ele : S) {
int sum = 2 * ele;
// For every sum find the
// getCountPairs
count += getCountPairs(
arr, N, sum);
}
// Return the total count of
// pairs
return count;
}
// Driver Code
int main()
{
int N = 6;
int arr[] = { 4, 2, 5, 1, 3, 5 };
cout<<(countPairs(arr, N));
}
// This code is contributed by ipg2016107.
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG {
// Function to count the total count
// of pairs having sum S
static int getCountPairs(int arr[],
int N, int S)
{
HashMap<Integer, Integer> mp
= new HashMap<>();
// Store the total count of all
// elements in map mp
for (int i = 0; i < N; i++) {
// Initialize value to 0,
// if key not found
if (!mp.containsKey(arr[i]))
mp.put(arr[i], 0);
mp.put(arr[i],
mp.get(arr[i]) + 1);
}
// Stores the total count of
// total pairs
int twice_count = 0;
// Iterate through each element
// and increment the count
for (int i = 0; i < N; i++) {
// If the value (S - arr[i])
// exists in the map hm
if (mp.get(S - arr[i])
!= null) {
// Update the twice count
twice_count += mp.get(
S - arr[i]);
}
if (S - arr[i] == arr[i])
twice_count--;
}
// Return the half of twice_count
return twice_count / 2;
}
// Function to count of pairs having
// whose average exists in the array
public static int countPairs(
int arr[], int N)
{
// Stores the total count of
// pairs
int count = 0;
// Use set to remove duplicates
HashSet<Integer> S = new HashSet<>();
// Insert all the element in
// the set S
for (int i = 0; i < N; i++)
S.add(arr[i]);
for (int ele : S) {
int sum = 2 * ele;
// For every sum find the
// getCountPairs
count += getCountPairs(
arr, N, sum);
}
// Return the total count of
// pairs
return count;
}
// Driver Code
public static void main(String[] args)
{
int N = 6;
int arr[] = { 4, 2, 5, 1, 3, 5 };
System.out.println(
countPairs(arr, N));
}
}
Python3
# Python program for the above approach
# Function to count the total count
# of pairs having sum S
def getCountPairs(arr,N,S):
mp = {}
# Store the total count of all
# elements in map mp
for i in range(N):
# Initialize value to 0,
# if key not found
if (arr[i] not in mp):
mp[arr[i]] = 0
mp[arr[i]] += 1
# Stores the total count of
# total pairs
twice_count = 0
# Iterate through each element
# and increment the count
for i in range(N):
# If the value (S - arr[i])
# exists in the map hm
if ((S - arr[i]) in mp):
# Update the twice count
twice_count += mp[S - arr[i]]
if (S - arr[i] == arr[i]):
twice_count -= 1
# Return the half of twice_count
return (twice_count // 2)
# Function to count of pairs having
# whose average exists in the array
def countPairs(arr,N):
# Stores the total count of
# pairs
count = 0
# Use set to remove duplicates
S = set()
# Insert all the element in
# the set S
for i in range(N):
S.add(arr[i])
for ele in S:
sum = 2 * ele
# For every sum find the
# getCountPairs
count += getCountPairs(arr, N, sum)
# Return the total count of
# pairs
return count
# Driver Code
N = 6
arr = [4, 2, 5, 1, 3, 5 ]
print(countPairs(arr, N))
# This code is contributed by shinjanpatra
C#
using System;
using System.Collections.Generic;
class GFG
{
// Function to count the total count
// of pairs having sum S
static int GetCountPairs(int[] arr, int N, int S)
{
Dictionary<int, int> mp = new Dictionary<int, int>();
// Store the total count of all
// elements in map mp
for (int i = 0; i < N; i++)
{
// Initialize value to 0,
// if key not found
if (!mp.ContainsKey(arr[i]))
mp[arr[i]] = 0;
mp[arr[i]] = mp[arr[i]] + 1;
}
// Stores the total count of
// total pairs
int twice_count = 0;
// Iterate through each element
// and increment the count
for (int i = 0; i < N; i++)
{
// If the value (S - arr[i])
// exists in the map hm
if (mp.ContainsKey(S - arr[i]))
{
// Update the twice count
twice_count += mp[S - arr[i]];
}
if (S - arr[i] == arr[i])
twice_count--;
}
// Return the half of twice_count
return twice_count / 2;
}
// Function to count of pairs having
// whose average exists in the array
public static int CountPairs(int[] arr, int N)
{
// Stores the total count of
// pairs
int count = 0;
// Use set to remove duplicates
HashSet<int> S = new HashSet<int>();
// Insert all the element in
// the set S
for (int i = 0; i < N; i++)
S.Add(arr[i]);
foreach (int ele in S)
{
int sum = 2 * ele;
// For every sum find the
// getCountPairs
count += GetCountPairs(
arr, N, sum);
}
// Return the total count of
// pairs
return count;
}
// Driver Code
public static void Main(string[] args)
{
int N = 6;
int[] arr = { 4, 2, 5, 1, 3, 5 };
Console.WriteLine(
CountPairs(arr, N));
}
}
// This code is contributed by phasing17.
JavaScript
<script>
// JavaScript program for the above approach
// Function to count the total count
// of pairs having sum S
function getCountPairs(arr,N,S)
{
let mp = new Map();
// Store the total count of all
// elements in map mp
for (let i = 0; i < N; i++) {
// Initialize value to 0,
// if key not found
if (!mp.has(arr[i]))
mp.set(arr[i], 0);
mp.set(arr[i],
mp.get(arr[i]) + 1);
}
// Stores the total count of
// total pairs
let twice_count = 0;
// Iterate through each element
// and increment the count
for (let i = 0; i < N; i++) {
// If the value (S - arr[i])
// exists in the map hm
if (mp.get(S - arr[i])
!= null) {
// Update the twice count
twice_count += mp.get(
S - arr[i]);
}
if (S - arr[i] == arr[i])
twice_count--;
}
// Return the half of twice_count
return Math.floor(twice_count / 2);
}
// Function to count of pairs having
// whose average exists in the array
function countPairs(arr,N)
{
// Stores the total count of
// pairs
let count = 0;
// Use set to remove duplicates
let S = new Set();
// Insert all the element in
// the set S
for (let i = 0; i < N; i++)
S.add(arr[i]);
for (let ele of S.values()) {
let sum = 2 * ele;
// For every sum find the
// getCountPairs
count += getCountPairs(
arr, N, sum);
}
// Return the total count of
// pairs
return count;
}
// Driver Code
let N = 6;
let arr=[4, 2, 5, 1, 3, 5 ];
document.write(countPairs(arr, N));
// This code is contributed by avanitrachhadiya2155
</script>
Time Complexity: O(N2)
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem